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1 INTRODUCTION

Basically, every structural health monitoring (SHM)
system is made up of various sensors measuring
specific physical parameters, a data acquisition unit,
and a storage device to save the acquired data. Tradi-
tional SHM systems show a starlike topology where
each deployed sensor is connected via long cable
runs to a central computer acting as data acquisition
and storage device. The installation of such systems
tends to be time consuming and therefore expensive
(Figure 1). Especially in the field of civil engineering
where the structures are typically large, the sensors
can be located long way away from the data acqui-
sition unit, resulting in high installation costs. These
costs have proved to be a major issue, preventing a
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broad application of monitoring techniques to large-
scale infrastructure. Furthermore, long cable runs are
prone to pick up noise, reducing the effective accu-
racy of the acquired data, and hence require expen-
sive high-quality cables. Moreover, these cables are
susceptible to mechanical damage involving consid-
erable maintenance efforts. Cabled systems also tend
to offer a limited flexibility in terms of rearrangement
of sensors and scalability. The adoption of wireless
sensor network (WSN) techniques to SHM applica-
tions promises to overcome these drawbacks.

1.1 Wireless sensor network

A WSN is essentially a computer network consisting
of many small, intercommunicating computers equip-
ped with one or several sensors. Each small computer
represents a node of the network. These nodes
are called sensor nodes or motes. The commu-
nication within the network is established using
radio frequency transmission techniques. The sensor
nodes typically form a multihop mesh network by
establishing communication links to neighbor nodes.
Multihop networks offer different advantages when
monitoring data has to be transmitted over long
distances. Mainly, the network robustness to sensor
node failure and the high power efficiency [1]
make multihop networks attractive for monitoring
applications. Figure 2 illustrates a schematic multihop
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Figure 1. Traditional, wired SHM installation.
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Figure 2. Wireless sensor network deployed on a road
bridge. The spots illustrate the sensor nodes, the straight
lines the communication links.

network deployed on a road bridge. The network
consists of several dozens of sensor nodes. Theo-
retically, the number of sensor nodes is unlimited.
All sensor nodes are equipped with specific sensors
tailored to their measurement tasks. On the one hand,
these nodes act as data sources, and on the other hand,
they act as relaying stations, receiving and forwarding

data from adjacent nodes. One or more particular
sensor nodes act as base station and represent the data
sink in the network. It aggregates all the data gener-
ated within the network. In addition, the base station
establishes a communication link to a data logging
unit or a remote site (e.g., control center), using
standard wired or wireless communication technolo-
gies like universal mobile telecommunications system
(UMTS) or wireless local area network (WLAN).
The initial research into WSNs was mainly
driven by military applications like battlefield
reconnaissance and surveillance, nuclear, biological,
and chemical attack detection, etc. These projects
focused on ad hoc, multihop WSNs that consisted of
thousands of immobile nodes randomly distributed
over a large geographical area (e.g., Smart Dust).
The nodes were tiny (hardly noticeable), severely
resource constrained, and homogeneous (identical
hard- and software). Subsequently, the emergence of
civilian applications of WSNs in different fields
(environmental monitoring, home automation, health
applications, production, inventory, delivery control,
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etc.) produced a significant diversification of
requirements with respect to deployment, mobility,
size, cost, network topology, lifetime, etc., and
therefore a flourishing of academic and commercial
WSN platforms. To cope with these requirements, the
platforms increased in size, computational resources,
and hardware, as well as in software complexity.

The first commercial platforms appeared in the late
1990s. The most important platform was Crossbow’s
Rene mote, which emerged from the weC mote
developed at the University of California, Berkeley,
and which evolved later to the popular Mica plat-
form. These platforms were the precursors of the
recent Mica2 and MicaZ platforms (Table 1). A major
reason for the popularity of Crossbow’s early mote
platforms was their open source policy with both
hard- and software design open to the public. This
policy built the base for the widespread diffusion
of TinyOS as operating system for WSNs. Today,
various commercial platforms with different char-
acteristics in terms of computing resources, sensor
interfaces, software architecture, etc., are available,
which allow to cope with a wide spectrum of civilian
applications.

2 HARDWARE ARCHITECTURES

The sensor nodes are the fundamental components
of a WSN. To enable WSN-based SHM applications,
the sensor nodes have to provide the following basic
functionality (Figure 3):

e signal conditioning and data acquisition for
different sensors;
temporary storage of the acquired data;
processing of the data;
analysis of the processed data for diagnosis and,
potentially, alert generation;
self monitoring (e.g., supply voltage);
scheduling and execution of the measurement
tasks;

e management of the sensor node configuration
(e.g., changing the sampling rate and reprogram-
ming of data processing algorithms);

e reception, transmission, and forwarding of data
packets;

e coordination and management of communication
and networking.

2.1 General architecture

To provide the functionality described above, a sensor
node is composed of one or more sensors, a signal
conditioning unit, an analog-to-digital conversion
module (ADC), a processing unit with memory, a
radio transceiver, and a power supply (Figure 4).

If the sensor nodes are actually deployed in
the field, especially in harsh environments like
construction sites, they have to be protected against
chemical and mechanical impacts. Therefore, an
adequate packaging of the hardware is required
(see Microelectromechanical Systems (MEMS)).

2.2 Hardware platform categories

Sensor node hardware platforms can be divided
into three categories [2]. Each category shows a
different hardware setup matched to diverse moni-
toring applications.

e Adapted general-purpose computers

These platforms are low-power personal computers
(PCs), embedded PCs, and personal digital assistants
(PDAs). These platforms mainly run on Windows
CE, Linux, or other operating systems developed
for mobile devices. These platforms are predomi-
nantly equipped with standard wireless communi-
cation devices like Wireless LAN (IEEE 802.11)
and/or Bluetooth (IEEE 802.15.1). Because of the
high processing ability and the high bandwidth
communication, these platforms offer the opportunity
to use higher level programming languages, which
makes it easier to develop and implement software
components. But in turn, they consume a consider-
able amount of energy and this can be prohibitive
in some application scenarios. Additionally, they
support networking protocols like Internet Protocol
(IP). This simplifies the integration into a monitoring
system.

e Embedded sensor modules

These platforms are assembled from commercial off-
the-shelf (COTS) Chips. Using COTS offers several
benefits. These components are widely used, making
them cheap because of big production quantities,
and are well supported by the manufacturers and
communities. The microcontroller unit (MCU) of
these platforms is mostly programmed in C. This
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Figure 3. Basic functionality of a sensor node.

enables the development of a tight code that fits the
limited memory size. Application developers have
full access to hardware, but at the same time need
to take care of all the resources. Examples from
this category are Tmote from Moteiv, Mica2, MicaZ
(Mica family), and Imote2 from Crossbow.

e System on chip (SoC)

These platforms integrate micro electromechanical
systems (MEMS) sensors, microcontroller, and
wireless transceiver technologies on one chip,
an application-specific integrated circuit (ASIC).
Because of this integration, platforms of this category
are extreme low-power devices and have a small
footprint/size. The smart dust node [3] is such an
example.

2.3 Energy-related aspects

The advantages of WSNs over wired sensing systems
only have an effect if an unattended operation of the

Sensors Antenna
| Power supply
‘_> > |
>~ CPU RF.
‘_> l<| transceiver
I Memory
Acqu.is.itign/ Processing Communication
conditioning

Figure 4. Sensor node (mote): hardware structure of a
sensor node.

motes for a reasonably long period of time can be
achieved. In terms of energy resources, this calls for
a self-contained power source and has shown to be
the most restrictive requirement in WSN applications.
One approach to provide sufficient energy to operate
the device over the desired period is to estimate the
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total amount of energy that will be consumed and to
equip the mote with adequately dimensioned energy
storage upon deployment. Although this approach is
a viable solution for some lowest-duty cycle appli-
cations, the required energy storage tends to become
too big for long-term SHM systems. For monitoring
applications that target overall system lifetime of
several years, the dissipated energy has to be regen-
erated from mote-extern sources. This process is
referred to as energy harvesting or scavenging. These
sources absorb energy from the mote’s environment
and convert it to electrical energy.

Numerous different types of energy storage and
harvesting concepts exist, but only the most impor-
tant ones for SHM systems are presented here. An
overview of other, partly inconvenient concepts is
given in [4].

2.3.1 Communication versus computation

In terms of power consumption, wireless data trans-
mission is much more expensive than data processing.
To extend system lifetime, it is preferable to prepro-
cess the raw sensor readings to reduce the data items
needed to be transmitted to the base station. Many
recent WSN-based SHM systems transmit the raw
data streams to the base station and analyze them in
the traditional centralized way. Without introducing
huge batteries, this is not a viable solution if a system
lifetime of several months to years is targeted. For
long-term monitoring applications, distributed anal-
ysis algorithms have to be introduced, which allow
for decentralized data reduction or even condition
assessment.

2.3.2 Energy storage devices

e Batteries

The most popular energy storage is batteries. Many
battery types with different characteristics have been
developed. Every battery has its own advantages and
drawbacks and the suitable battery technology has
to be selected according to the application require-
ments. Rechargeable batteries are utilized if energy
is harvested from the mote’s environment.

e Ultracapacitors
The features of supercapacitors lie between those of
capacitors and rechargeable batteries. Supercapacitors

exhibit virtually unlimited charge—discharge cycles
like capacitors, but offer a much higher capacity.
These components are adequate as energy storage if
it is emptied and replenished in short intervals.

e Fuel cells

This is a more recent but promising technology.
Fuel cells oxidize hydrogen or hydrocarbon fuels and
convert the heat into electrical energy. Currently, the
commercially available fuel cells are too big in terms
of size and converted energy to be applied to motes.
However, much effort is being put into the devel-
opment of small fuel cells for laptops and mobile
phones. These devices will suit WSN applications
well.

2.3.3 Energy harvesting and scavenging
devices

Because of their nature, environmental energy scav-
enging devices do not provide a constant energy flow.
Therefore, these devices are predominantly operated
in conjunction with a storage device like a super-
capacitor or a rechargeable battery. It stores excess
energy and provides it later, when not enough can be
harvested from the environment.

e Solar cells

The most popular energy scavenging sources are
solar cells. A reasonably small panel delivers enough
energy to power a sensor node. Solar cells are
predominately operated in conjunction with a super-
capacitor or a rechargeable battery. This energy
storage is needed to provide energy, when the panel
does not. Obviously, solar cells are only an option for
outdoor applications.

e Wind mills

More unusual energy scavenging devices are small-
scale wind mills or turbines. Like solar cells, this
concept is only suitable for outdoor applications.

e Vibration

An energy harvesting method that is considered for
civil engineering applications is to convert vibration
energy. Civil engineering structures contain a lot of
vibration energy, but it is extremely hard to extract it.
The energy levels that current prototypes provide are
far to low for monitoring applications. But it could
evolve to an interesting source in the future.
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2.4 Overview of recent architectures

Various hardware platforms for WSNs are available
today and new ones emerge regularly. This diversity
offers the possibility to choose a platform that best
fits the needs of a specific application. An overview
of recently used platforms is given in Table 1. This
table only shows a selection. Further platforms are
presented in [5] and regularly updated lists in the
Internet can be found at [6-9].

2.5 Tmote Sky from Moteiv Corporation

Tmote [10] from Moteiv Corporation is presented as
an example of a popular WSN platform (Figure 5).
Many comparable platforms with similar hardware
setups exist today. All these platforms are based
on the Texas Instruments microcontroller family
MSP430 and the Chipcon radio CC2420.

The main components of Tmote sensor node plat-
form are the TI MSP430F1611 microcontroller, the
FTDI FT232BM USB interface, which allows for
programming the microcontroller over USB, and the
Chipcon CC2420 low-power radio chip for the wire-
less communication.

The ultra-low-power microcontroller features
10kB of RAM and 48 kB of program memory (flash).
This 16-bit processor features several power-down
modes with extremely low sleep-current consumption
that permits the sensor node to run for a long period
of time from a limited energy resource. The MSP430
has an internal, digitally controlled oscillator (DCO)
that may operate up to 8 MHz. The microcontroller
may be turned on from sleep mode in 6 s, which
allows for short reaction time upon the occurrence
of an event. When the DCO is off, the MSP430 is
clocked from an external 32 768-Hz watch crystal.

The MSP430 has eight external 12-bit ADC
ports of which six are accessible on a pin header
on the Tmote. The ADC input ranges from 0 to

Figure 5. Picture of a Tmote Sky form Moteiv (top view).

3.0V. The maximum total sampling rate for all
ports is 200kHz at 12-bit resolution. The internal
ADC ports may be used to monitor the internal
processor temperature and the supply voltage. A
variety of peripherals are available, including serial
peripheral interface (SPI) and universal asynchronous
receiver/transmitter (UART), enabling the communi-
cation to digital output sensors, digital I/O ports, a
watchdog timer, and timers with capture and compare
functionality. The I>C port, which is also integrated
into the microcontroller, is mainly used to commu-
nicate to additional sensors and signal conditioning
boards. The MSP430 also includes a 2-port 12-bit
digital-to-analog converter (DAC) module, a supply-
voltage supervisor, and a 3-port direct memory
access (DMA) controller. Detailed features of the
MSP430F1611 are presented in the Texas Instruments
MSP430x1xx Family User’s Guide [11].

The Tmote platform is equipped with the Chipcon
CC2420 radio, enabling IEEE802.15.4 standard com-
pliant wireless communication. It offers reliable wire-
less communication and power management capabil-
ities to ensure low-power consumption. The CC2420
is controlled by the TI MSP430 microcontroller
through the SPI port and a series of digital I/O.
The radio may be shut off by the microcontroller
for reducing the power consumption. The CC2420
provides a digital receive signal strength indicator
(RSSI) that may be read at any time. The program-
mable transmitter output power enables to optimize
the power consumption. The theoretically achiev-
able maximum data throughput rate of the system is
250 kbps, without framing and packet headers.

3 SOFTWARE PLATFORMS

Unlike general-purpose operating systems for stan-
dard PCs such as Windows or Linux, the WSN
software platforms are highly tailored to the limited
node hardware. These WSN software frameworks
are not full-blown operating systems, since they
lack a powerful scheduler, memory management, and
file system support. However, these frameworks are
widely referred to as WSN operating systems. There-
fore, this term is retained in the following section.

TinyOS [12], one of the most widespread operating
systems, is presented in more detail in the following
section. Other operating systems developed for WSNs
are Contiki [13], Mantis [14], and SOS [15].
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3.1 TinyOS

TinyOS is written in nesC [16], an extension
to the C language, which supports event-driven
component-based programming. The basic concept of
component-based programming is to decompose the
program into functionally self-contained components.
These components interact by exchanging messages
through interfaces. The components are event-driven.
Events can originate from the environment (a certain
sensor reading exceeds a threshold) or from other
components, triggering a specific action. The main
advantage of this component-based approach is the
reusability of components.

The nesC language extension introduces several
additional keywords to describe a TinyOS compo-
nent and its interfaces. nesC and TinyOS are both
Open Source projects supported by a fast growing
community.

TinyOS has been ported to over a dozen WSN
platforms (Table 1) and is also the native operating
system of the presented Tmote platform. It provides a
concurrency model and mechanisms for structuring,
naming, and linking software components into a
robust network embedded system. Today, TinyOS is
a sort of de facto standard in WSN programming and
widely used in the WSN community. As a result,
a huge amount of software components for various
sensors, network protocols, algorithms, and other
WSN related topics is freely available on the Internet.
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