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INTRODUCTION

Molecular dynamics (MD) is a powerful tool in modern chemistry that allows
one to describe the time evolution of a computational model for a complex
molecular system.! ™3 Typical models range from being highly accurate where
energy and forces are computed with advanced and expensive quantum chem-
istry methods to faster but less accurate empirically parameterized force fields
at atomistic or coarser resolution. The power of these techniques lies in their
ability to reproduce experimental observable quantities accurately while, at the
same time, giving access to the mechanistic details of chemical reactions or
conformational changes at very high spatial resolution — typically at atom-
istic scale. For this reason, MD is often used to complement experimental
investigations and to help in interpreting experiments and in designing new
ones. Moreover, thanks to new parallelization algorithms and to the contin-
uous improvements in computer hardware driven by Moore’s law, the range
of application of these techniques has grown exponentially in the past decades
and can be expected to continue growing.

Reviews in Computational Chemistry, Volume 28, First Edition.
Edited by Abby L. Parrill and Kenny B. Lipkowitz.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.



&

2 Free-Energy Calculations with Metadynamics: Theory and Practice

In spite of its success, however, MD is still limited to the study of events on
a very short timescale. Indeed, depending on the required accuracy and on the
available computational resources, MD can provide trajectories for events hap-
pening on the timescale of picoseconds (quantum chemistry) to microseconds
(empirical force fields). Thus, many interesting phenomena, namely, chemical
reactions, protein folding and aggregation, and macromolecular rearrangement
are still out of reach of direct investigation using straightforward MD tra-
jectories. Besides the optimization of computer software (e.g., Ref. 4) and/or
hardware (e.g. Refs. 3, 6), it is a possible complementary strategy to alleviate
this issue by using algorithms where the time evolution is modified to sample
more frequently the event under investigation. Then, appropriate postprocess-
ing techniques are necessary to recover unbiased properties from the accelerated
trajectories.

Many algorithms to accelerate MD simulations have been designed in the
past decades, and a discussion of all of them is out of the scope of this chapter.
Some of these algorithms are based on increasing the temperature of the sim-
ulated system (e.g., parallel tempering’ and solute tempering®), while others
are based on exploiting an a priori knowledge of the investigated transition to
design a proper order parameter to both describe and accelerate it. This last
class includes umbrella sampling,® adaptive biasing force,!’ metadynamics,'!
self-healing umbrella sampling,'> and other methods that keep the selected
order parameters at an artificially high temperature.'3~15 This chapter focuses
on metadynamics, which was first introduced in 2002'" and then improved
with several variants in the past decade. Metadynamics has been employed suc-
cessfully in several fields, ranging from chemical reactions!® to protein folding'”
and aggregation,!® molecular docking,'” crystal structure prediction,?? and
nucleation.?! A further push in the diffusion of metadynamics application has
been its availability in a few widespread molecular dynamics codes??~%* and
in open-source plugins.>> =%’

The main goal of this chapter is to provide an entry-level tutorial for
metadynamics. In Section “Molecular Dynamics and Free-Energy Estimation”
we provide an introduction to the basic concepts of molecular dynamics and
of free-energy calculations. In Section “A Toy Model: Alanine Dipeptide”
we introduce a toy model that will then be used for subsequent examples.
Section “Biased Sampling” is devoted to the introduction of biased sampling.
In Sections “Adaptive Biasing with Metadynamics” and “Well-Tempered
Metadynamics” metadynamics is introduced, and Section “Metadynamics
How-To” provides a practical how-to for performing a free-energy calculation
with metadynamics. For all the simulations described in that section a sample
input file for the open-source package PLUMED 22° is given in the Appendix.
In the remaining sections, a quick overview of some of the latest improvements
in the field is given, followed by a concluding section.
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MOLECULAR DYNAMICS AND FREE-ENERGY
ESTIMATION

Molecular Dynamics

In classical MD,!~3 the Hamilton equations of motion are solved numerically
to follow in real time the propagation of a collection of atoms. For a system of
N,, atoms with coordinates g;, momenta p;, and masses 7, a potential energy
U(q) should be defined. Notice that we use here g, without subscript, mean-
ing the full 3N,,-dimensional vector containing all the atomic positions. The
Hamilton equations of motion will then read

_b

mi

1(C)
b= [1b]

qi [1a]

Here with % we mean the derivative with respect to the time of the variable
x. The potential energy function U(g) describes the interatomic interactions.
These interactions are sometimes defined in terms of empirically parameterized
force fields, which provide a cheap and reasonably accurate approximation for
U(q), and sometimes the interactions are obtained by solving the Schrodinger
equation for the electrons (ab initio calculations), to allow studying phenom-
ena such as electron transfer and chemical reactions. In our examples we will
only use empirical potentials. However, the specific definition of U is totally
irrelevant for what concerns the discussed methodologies, which often rely on
ab initio calculations.

For a system evolving accgrding to the Hamilton equations [1a] and [1b],

the total energy H(p, q) = Z,zp—y; + U(q) is conserved, so that only configura-

tions that have a total energy exactly equal to the initial one are explored.
This will provide the correct properties for an isolated system. On the con-
trary, whenever a system is coupled to an external bath, the transfer of energy
between the system and the bath implies that different values of the total energy
are accessible. More precisely, the phase space point (p, g) will be explored with
a probability P(p, q), which, in the case of a thermal bath, corresponds to the
canonical ensemble:

SE U@

P(p, q)dpdq  exp _lk—T dqdp (2]
B



&

4  Free-Energy Calculations with Metadynamics: Theory and Practice

where kg is the Boltzmann constant and T is the temperature of the thermal
bath. Within MD, this is typically done by adding a so-called “thermostat” to
the Hamilton equations.? Strictly speaking, a thermostat alters the dynamical
properties, so that the latter could lose their physical meaning. This in turn
depends a lot on the details of the adopted thermostat. Nonetheless, irrespective
of the thermostat, MD can always be used to generate configurations according
to the canonical distribution.

A crucial aspect of using MD for sampling the canonical distribution is the
so-called ergodic hypothesis: if a system is simulated long enough all the states
pertaining to the canonical ensemble will be explored, each with its own correct
statistical weight. Unfortunately, this hypothesis cannot be proven for most of
the systems and, even when verified, the length of a simulation necessary for
this hypothesis to be exploited in calculating ensemble averages is often far out
of reach for numerical simulations. This has profound consequences and led in
the past decades to the development of several enhanced sampling algorithms
that were designed to alleviate this difficulty.

Free-Energy Landscapes

The canonical distribution of a system sampled via MD carries full information
about its thermodynamic properties. However, this probability distribution is
of very little use. Indeed, the space on which it is defined (i.e., the set of all
possible positions and velocities of all the atoms in a system) is huge — it is a
6N,, dimensional space — so that this function is completely unintelligible. For
this reason, molecular systems are often analyzed in terms of collective vari-
ables (CVs) rather than atomic coordinates. A CV is a function of the atomic
coordinates that is capable of describing the physics behind the process under
investigation. As an example, for an isomerization process a reasonable CV
could be a torsional angle, whereas for a proton transfer two reasonable CVs
could be the distances between the hydrogen and each of the two involved
heavy atoms. Because the CVs are functions of the atomic coordinates, we
shall indicate them as s,(q), with a = 1, ... , Ny and let Ny be equal to the
number of CVs used. In short, the CVs represent a sort of coarse description
of the system, which can be used to analyze a given process in low dimen-
sionality. A basic requirement for a CV is being able to distinguish all the
peculiar states of interest without lumping together states that are very different
physicochemically.

When analyzing a molecular system using CVs s(g), a role equivalent to
that of the potential energy is played by the Helmholtz free energy F(s). F(s) is
defined in such a manner that the probability of observing a given value of s is

P(s)ds « exp (—%) ds [3]
B
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It can be shown that the relationship between U(g) and F(s) can be written
explicitly as

U
E(sp) = —kBTlog/dqé(S(q) — 50) exp <— z (qT)> +C (4]
B

where the Dirac 6 selects all the microscopic configurations corresponding to a
specific value s, of the CV and C is an arbitrary constant.

A typical free-energy landscape for an activated event is shown in
Figure 1. Here one can appreciate a stable state denoted by “A” (low free
energy, thus high probability), a metastable one denoted by “B” (slightly higher
free energy, thus lower probability), and an intermediate region (very high free
energy, thus very small probability). A proper definition of metastability is out
of the scope of this chapter. The height of the free-energy barrier compared
with the value of the thermal energy k;T affects the probability of observing
the system in the intermediate region and thus the typical time required to
go from “A” to “B” or vice versa. When CVs are appropriately chosen, the
transition rate between minima “A” and “B” can be estimated according to
transition state theory by an Arrhenius-like formula:

_AFE
Vaop = vpexp ‘BT [5]

where AF* is the free-energy difference between the starting minimum and the
transition state and v is a prefactor. NOta?lyﬁ the ratio between forward (vy_p)
A™'B

and backward (v_ ) rates is equal to e ®7T | according to detailed balance.
Thus, when appropriate CVs are used, the free-energy landscape provides a
quantitative picture of the transition in terms of reactants and products stability
and transition rates.

Evaluating the free-energy landscape defined by Eq. [4] is usually a daunt-
ing task, as it would require the calculation of a multidimensional integral in
3N,, dimensions. For this reason, the typical approach employed to compute

Free energy

Ccv

Figure 1 A model double-well potential. The stable state is denoted by “A” and the
metastable one is denoted by “B.” The gray shaded regions are those where the system
fluctuates because of its thermal energy. The region in between is very unlikely to be
explored, therefore making the transition from “A” to “B” less probable to occur.
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free-energy landscapes is based on conformational sampling by means of MD or
Monte Carlo (MC) methods. Indeed, if one is capable of producing a sequence
of conformations (i.e., a trajectory) that are distributed according to the canon-
ical ensemble, the free energy can be computed from the histogram of the visited
conformations as

F(s) = —kgT log N(s) [6]

where N(s) counts how many times the value s of the CVs has been explored.
Because typical CVs are noninteger numbers, the histogram N(s) is typically
accumulated using a binning procedure. As discussed earlier, MD simulations
allow one to produce such distribution via the ergodic hypothesis although, as
we will show in the following section, this might be problematic even for very
simple cases.

A TOY MODEL: ALANINE DIPEPTIDE

In this section we introduce a simple toy model that presents all the features of
a typical real-life molecular system but still is small enough to allow the reader
to readily test the concepts by means of inexpensive molecular dynamics sim-
ulations. This system is alanine dipeptide (ACE-ALA-NME), which is a small
peptide in nonzwitterionic form (see Figure 2).

We describe interatomic interactions using the functional form U(q)
defined by the CHARMM 27 force field,?® a standard force field available
in many biomolecular-oriented molecular dynamics codes. For the sake of
simplicity, all the simulations are carried out in vacuum as the free-energy
landscape in such conditions presents several interesting features and has
been studied previously using many different free-energy methods (see, e.g.,
Refs. 30—35) thus being a perfect test bed for the discussion.

&
4

Figure 2 Molecular representation of alanine dipeptide. The two Ramachandran dihe-
dral angles are denoted with @ and . All the molecular representations are produced
with VMD.?8
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Figure 3 Representation of the free-energy landscape for alanine dipeptide as a func-
tion of the two Ramachandran dihedral angles ® and W¥. Each isoline accounts for
1 kcal/mol difference in free energy. The two main minima, namely, C,,. and C,__, are

7eq 7ax>
labeled.

Alanine dipeptide in vacuum presents a peculiar free-energy landscape
that can be rationalized in terms of Ramachandran dihedral angles. It displays
two main minima: Cyq and C,, (see Figure 3), placed around ® ~ —1.41 rad,
¥~ 1.25 rad and ® ~ 1.26 rad, ¥ ~ —1.27 rad, respectively. These two basins
are separated by barriers around 8 kcal/mol that are remarkably higher than
thermal energy at 300 K (kg T = 0.597 kcal/mol), therefore presenting a typical
case of metastability. In such a small system the differences in potential energy
landscape are comparable with free-energy differences. Therefore, the Arrhe-
nius equation can be used as a model to roughly estimate the rate of transition

from one state to the other .
_sut
v =vyyexp kBT [7]

where AU¥ is the potential energy difference between one metastable state,
say C;q, and one of the transition states toward C,,,. By assuming that the
prefactor v, as an upper bound, corresponds to the carbon—carbon vibra-
tion frequency in the force field we get vy = 5 x 10?/s. By using a barrier of
8 kcal/mol and kT = 0.597 kcal/mol we obtain a rate of 7 x 10° events per
second, thus each barrier crossing could take about a millisecond. Unfortu-
nately, such timescales are inaccessible to MD simulations that nowadays can
reach several microseconds at most. Therefore, it is easy to understand why
the problem of acquiring statistics of events that allow us to estimate the rela-
tive probability of metastable states is one of the grand challenges in computer
simulations. For this reason some different techniques, also called enhanced
sampling methods, have been devised through the years. Some of them will be
the subject of the next sections.
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BIASED SAMPLING

We have seen in Section “A Toy Model: Alanine Dipeptide” that even for a very
small and simple molecule some transitions could be hindered by free-energy
barriers. If the system is going to sample only minimum “A” or minimum “B”
in Figure 1 and no transitions are observed, then Eq. [6] is completely useless to
evaluate the free-energy difference between “A” and “B.” Because the low tran-
sition rate is due to the fact that a nonlikely region (the barrier) is in between
the two minima, it is intuitive that increasing the probability of sampling the
barrier could alleviate this problem. Furthermore, because the barrier height
affects the transition rate in an exponential manner (Eq. [5]), it is clear that
changing the barrier could easily lead to a dramatic change in the observed
rates.

As first step, it is important to analyze what happens if an additional
potential V(s), which acts only on the CVs s, is added to the physical one U(g).
The resulting potential will be U(g) + V(s(g)), so that the explored conforma-
tions will be distributed according to a biased canonical distribution

p*
25 U@+ Vs@)

P'(p,q) x exp|—— BT [8]

If one tries to evaluate the free-energy landscape from such a biased distribution
of conformations, one will end up in a different free energy ', which is related
to the original one by

F’(So) = - kBTIOg/dqé(s(q) — 50) exp <_w> + C,
B

=V(sy) + F(sg) + C' = C [9]

where the part relative to the momenta has been integrated out and C’
is another arbitrary constant. The correct free-energy landscape can then
be recovered from the biased one up to an arbitrary constant by simply
subtracting the bias potential V(s).

Now, by supposing that the free-energy landscape is a priori known, at
least approximately, it is possible to imagine performing a biased simulation,
using V(s) = —F(s) as a bias where F(s) is our estimate for the free-energy land-
scape. The resulting simulation will explore the distribution,

, FO+VE) _ _F)-F)
P'(s) «x exp ( 7kBT > = exp< 7/%1;7" ) [10]
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which is an almost flat distribution. More precisely, this distribution is more
and more flat if the estimate of the free-energy landscape is more and more
accurate. In the ideal case, the free-energy barrier disappears because all the
values of s are equally likely. This method is known as the umbrella sampling
method.’

The efficiency of umbrella sampling depends on the accuracy of the initial
guess of the free-energy landscape. An error of even a few kzT could pro-
vide incorrect statistics because it would be unlikely to overcome the residual
free-energy barriers. As we will see in the next section, this problem can be
solved using an iterative procedure to build the bias potential.

ADAPTIVE BIASING WITH METADYNAMICS

Several algorithms have been proposed in the literature to progressively build
a bias potential suitable for an umbrella sampling calculation.!0-3¢-37 We focus
here on metadynamics.!!-38

Metadynamics was originally introduced as a coarse dynamics in collec-
tive variable space, much in the spirit of Ref. 39. This dynamics was then
accelerated by adding a penalty to the already visited states, similarly to the
taboo search method*° and the local elevation method.#! Later, a version based
on an extended Lagrangian formalism was introduced.!® Presently, the most
adopted variant is the continuous one.?® In this chapter, we will only focus on
this latter version.

In metadynamics (MetaD), a history-dependent bias potential is built dur-
ing the simulation as a sum of repulsive Gaussians in the CV space. This is
illustrated in Figure 4. These Gaussians are centered on the explored points in
the CV space, have a preassigned width (o) and height (w;), and are deposited
every 7 time units as the simulation proceeds. The bias potential at time # thus
reads

252

/7 Nev (¢ _ ; 2
Vi(s,t)= ) wg exp l—zwl [11]

i=1 a=1 P
Notice that the width needs to be fixed for each of the CVs (s, ). These widths
determine the binning on each CV, that is, they can be used to state which dis-
tance in CV space should be considered as negligible. Intuitively, Gaussians are
repeatedly added to the potential according to the explored states, such that
they discourage the system from visiting again already visited configurations in
the CV space. Notice that this procedure is done in the (low dimensional) CV
space. Trying to do so in the full configurational space could not work in prac-
tice, because in that representation the system will practically never explore
twice the same point. Contrarily, in the CV space, the system has a reason-
able chance to explore several times the same value of s, albeit at different
microscopic configurations q.
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Figure4 A sketch of the process of metadynamics. First the system evolves according to
a normal dynamics, then a Gaussian potential is deposited (solid gray line). This lifts the
system and modifies the free-energy landscape (dashed gray line) in which the dynamics
evolves. After a while the sum of Gaussian potentials fills up the first metastable state
and the system moves into the second metastable basin. After this the second metastable
basin is filled, at this point, the system evolves in a flat landscape. The summation of
the deposited bias (solid gray profile) provides a first rough negative estimate of the
free-energy profile.

Several parameters should be chosen in a MetaD simulation and we will
discuss how this is done in Section “Metadynamics How-To”. Here we just
observe that the w and 7; parameter in Eq. [11] are not independent, and
that, if they are chosen within meaningful ranges, what really matters is their
rate @ = w /7g, also known as the deposition rate. In the limit of small z;, the
expression for the history-dependent bias becomes Eq. [12].

t Ney (o ")?
V(s.t) = / dt’ exp l— > M] [12]
0

2
ot 20}
Equivalently, it is possible to state that the bias potential V(s) evolves with time
according to the following equation of motion.

Ncy _ 2
V(s,t) = wexp l_ Z e 2:12(1:)) ]

a=1

[13]

The combination of this equation of motion with the Hamilton equations [1]
describes completely the time evolution of a MetaD simulation. Another impor-
tant observation is that the Hamiltonian dynamics is perturbed only through
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the force term produced by V(s,#). Thus, thinking that very wide Gaussians
could compensate for the barrier in a faster way is incorrect as these may pro-
duce smaller forces.

It can be understood intuitively from Figure 4 that such a procedure not
only discourages the exploration of the already visited states in the CV space,
but also provides an immediate estimate for the underlying free-energy surface.
As more and more Gaussians are added to the bias, the system will explore a
larger and larger fraction of the CV space. Because Gaussians are most likely
added at points where the effective total free energy F(s) + V(s) is lower, their
effect will tend to flatten the F(s) + V(s) function. After a suitable “filling” time,
the bias will start growing parallel to itself, and one can expect to directly esti-
mate F(s) as —V(s), but for an additional arbitrary constant. This hand-waving
conclusion has been tested accurately on realistic systems.>® It can be supported
by a rigorous analytical derivation that is based on assuming the CVs are evolv-

ing by means of a stochastic Langevin dynamics:*?
D oF
s=-——2L 41 V2D 14
kgT 0s d [14]

where D is the diffusion coefficient of the CV and ¢ a random noise. Within
this framework, the error made in using —V(s) as an estimator for F(s) can be
quantified from the function

e(s) = F(s) + V(s) — é/ds[F(s) + V(s)] [15]

where the integral is taken over the CV space and Q is a normalization factor
equal to the total volume of the integration region. Recalling that F(s) is defined
up to an arbitrary constant, the integral in Eq. [15] allows this arbitrary con-
stant to be removed. For Langevin dynamics, it can be shown that &(s) is not
exactly zero, but its difference from zero fluctuates in time. The fluctuations
have squared amplitude (%) « w/D. This leads to two important observations:

e The statistical error grows with the deposition rate. Thus, a compro-
mise should be found: @ should be large enough to quickly fill the basins
in the free-energy landscape, but should also be small enough to limit
the error in the free-energy estimation.

e The statistical error is larger for slower CVs (i.e., smaller D) because
for such variables Gaussians are deposited on top of one another thus
acting like an effective higher w. This influences the compromise dis-
cussed above and implies that for slower descriptors one must choose
a smaller deposition rate.

Because the free-energy estimate can be shown to be free from systematic
errors, at least for model systems, it is always possible to increase its accuracy
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by taking a time average of the result, as first proposed by Micheletti et al.*3 It is
thus in principle sufficient to prolong a simulation enough to decrease the error
above any desired threshold. This, however, can lead to another problem of
MetaD: because MetaD is a flat histogram method it tries to sample the whole
CV space. Consequently, the simulated system can be pushed toward states with
nonphysically high free energy and might drift the simulation toward thermo-
dynamically nonrelevant configurations. Additional restraining potentials on
the CVs may alleviate this effect as discussed, for example, in Ref. 44. Never-
theless, because restraining potentials can add small artifacts in the free-energy
estimation at the border, a better strategy was introduced in Ref. 45 and is
based on the idea of neglecting forces due to the Gaussian potential when the
CV is outside the desired range.

Reweighting

One of the drawbacks of metadynamics, which is shared with all the methods
based on biasing CVs, is that those CVs should be chosen before perform-
ing the simulation, and their choice typically affects the accuracy of the final
result. However, it is sometimes very useful to compute free energies as func-
tions of CVs that differs from the biased CV. This can be done by an a posteriori
analysis. This kind of analysis on MetaD simulations has been introduced in
Ref. 46. It is based on the weighted histogram analysis method.*” Although
typically used in the framework of bias exchange metadynamics (see Section
“Bias Exchange Metadynamics”) where a large number of CVs is used, this
technique can be applied straightforwardly to normal MetaD.

WELL-TEMPERED METADYNAMICS

Standard MetaD, introduced in the previous section, has two well-known prob-
lems:

e Its estimate for the free-energy landscape does not converge but fluc-
tuates around an estimate that, at least for simplified systems, can be
demonstrated to be unbiased.

e Because it is a flat histogram method, it tries to sample the whole CV
space. This can push the simulated system toward states with nonphys-
ically high free energy and might drift the simulation toward thermo-
dynamically nonrelevant configurations.

As discussed, both these problems have been recognized and tackled
respectively by taking time averages*> and by using restraining potentials.**
An alternative method that addresses both the problems in an elegant fashion,
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called well-tempered metadynamics (WTMetaD), has been introduced in
Ref. 48.
In WTMetaD, the rule for the bias update (Eq. [13]) is modified slightly

to:
Ny 2
. V0,0 W (s s ()
V(s,t) = wexp [ —kBAT ] exp l ; —203 [16]

Eq\l/nvalently, each Gaussian, when deposited, is scaled down by a factor
.0

e *BAT | where the bias potential has been evaluated at the same point
where the Gaussian is centered and AT is an input parameter measured in
temperature units. Equation [16] implies that, after the initial filling, Gaussians
of different height are added in different regions of the CV space. In particular,
on top of deep wells, where a sizable bias has been already accumulated,
the additional Gaussians have small height. In contrast, at the border of the
explored region, where the bias is still small, the additional Gaussians have
large height. In the long time limit, when the bias potential tends to grow
parallel to itself, the simulated system should systematically spend more time
on the regions where smaller Gaussians are used, that is, on top of deeper
wells. This disrupts the flat histogram properties of the method and in turn
implies that the sum V(s) + F(s) is no longer encouraged to become flat.

To estimate this deviation from the flat histogram behavior quantitatively,
one should assume that the added Gaussians are narrower than the features of
the underlying free-energy landscape and thus can be considered equivalent to
6 functions with the proper normalization:

Ncy _ 2 Ngy
exp l— > M] ~ 8(s — se) [[ (V2z0,) [17]
a=1

= 202
This allows us to approximate the bias update rule (Eq. [16]) as
V(s,t) = wexp < V;ZZ)T”> H(\/zm )8(s — s(2)) [18]

In the long time limit, the CV s will be distributed according to a biased canon-
F(s)+V(s.t)

ical distribution P(s) x ¢ ®7T |, and the bias will grow according to

V@,  V(s,b) +F(s)>

V(s, 1) « exp <— [19]

By direct substitution, one finds the condition for the bias to grow uniformly,
that is, for V(s, t) to be independent of s:

Vis) = - (F(s) — C@)) [20]

A
T+ AT

&
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This last equation indicates that in WTMetaD the bias does not tend to
become the negative of the free energy but is instead a fraction % of it.
Thus, it only partially compensates existing free-energy barriers by an a pri-
ori known scaling factor. This factor can be tuned adjusting the AT input
parameter. Moreover, in the long time limit, the system will explore the biased
canonical distribution:

_Ee)+V(s,t) _ F(s)
P(s)xe kT e kp(T+aD [21]

As a consequence of the bias potential, the collective variable is exploring the
canonical ensemble at an effective temperature T + AT. Notice that the other
microscopic variables are still sampled using a thermostatted MD at tempera-
ture T. In this sense, WTMetaD is related to other methods where an equivalent
effect is obtained by extending the configurational space and by exploiting adi-
abatic separation of the CVs from the microscopic fluctuations.!3~1

In short, WTMetaD allows performing a simulation where, in the long
time limit, the effective temperature of one or more selected CVs is kept at an
arbitrarily high value T + AT. For AT — oo, standard metadynamics is recov-
ered (see Section “Adaptive Biasing with Metadynamics”). For AT = 0, unbi-
ased sampling is recovered.

This last feature of WTMetaD is of great advantage as it allows limit-
ing the exploration of the CV space only to regions of reasonable free energy.
Indeed, by fixing AT according to the height of the typical free-energy barrier
for the problem under consideration, one will avoid overcoming barriers that
are much higher than that.

Reweighting

As discussed in Section “Reweighting,” it is sometimes useful to compute free
energy as a function of a posteriori chosen CVs different from the biased ones.
This is typically done in WTMetaD using a reweighting scheme introduced in
Ref. 49. Here the time derivative of the partition function is estimated on the
fly and allows consistent combination of data obtained at different stages of
the simulation. An alternative has also been recently proposed3S on the basis
of the classical umbrella sampling formula.” Both these techniques are specific
for WTMetaD.

METADYNAMICS HOW-TO

When adopting a new technique, the most frequent questions novice users ask
are about how to choose the right input parameters. In MetaD in its various
flavors there are three aspects that should be taken into account, namely:

e The choice of CV(s).
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e The width of the deposited Gaussian potential.

e The energy rate at which the Gaussian potential is grown and, for
WTMetaD, the parameter AT that determines the schedule for decreas-
ing it along the simulation.

All of these decisions are deeply intertwined and we briefly outline here the
main criteria for their choice, pushing on the practical implications and error
diagnostics that allow one to decide whether the simulation parameters are well
chosen or not.

The choice of the various parameters in MetaD generally relies on the fol-
lowing formula3%4? that determines the error of a MetaD simulation under the
assumption that the dynamics can be approximated by the Langevin equation:

£ = Cd)/ %w kT [22]

Here C(d) is a prefactor that depends on the dimensionality of the problem (i.e.,
the number of CVs included), S is the dimension of the domain to be explored,
6s is the width of the Gaussian potentials, D is the diffusion coefficient of the
variable in the chosen space, and w is the energy deposition rate for the Gaus-
sian potential. This equation has several nuances that need to be explained, and
here we will do it by considering alanine dipeptide as a “real-life” example.

The Choice of the CV(s)

Understanding the system one wants to study is pivotal in devising the cor-
rect CV(s) one needs. So, at any level, an accurate bibliographic search is very
important in understanding the key factors in performing any kind of MetaD
calculation. As an example, in computational biology problems, a mutation
experiment that inhibits folding might be a signature of an important side-chain
interaction that one needs to take into account.

More importantly it is worth understanding a key point of all the
enhanced sampling techniques involving biasing one or more collective coor-
dinate: a good descriptor might not be a good biasing coordinate. As a matter
of fact, it may happen that different conformations might be distinguishable
by using a specific dihedral as CV but if this is the outcome of a more complex
chain of events and not the cause, one might end up by being disappointed by
the result obtained by MetaD or other biased-sampling methods. Therefore, it
is very important to understand that the lack of convergence of a free-energy
calculation is often due to a suboptimal choice of CVs rather than the specific
choice of the enhanced sampling technique.

In Section “Advanced Collective Variables” we will discuss ad hoc solu-
tions for finding CVs that are optimal for specific problems. For the time being,
we refer to the example of alanine dipeptide and try to identify the relevant
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order parameters. Assume that we have no prior knowledge of the importance
of the Ramachandran dihedral angles, and we intend to describe the transi-
tion between Cyq and C;,, with one single order parameter. Intuitively, the
Cy¢q conformer is more extended than is the C5,, conformation (see Figure 3).
Therefore, “gyration radius,” defined as

1 - 1 -
o n) e

where the summation runs on N heavy atoms, could be considered as a reason-
able guess.

A simple molecular dynamics run of 200 ps in both basins can show that
this descriptor is able to distinguish one state from the other (see Figure 5)
because most of the sampling for C, is concentrated at high values, whereas
C-, exhibits low values of radius of gyration.

It is worth mentioning here that a better order parameter should be able
to map the two minima onto two completely different regions of the CV space.
The implication of having a partial overlap of the populations for the two
basins, when they are structurally dissimilar as in this case, is that the kinet-
ics cannot be simply retrieved through the free-energy landscape but requires
the calculation of the transmission coefficient.2 Nevertheless, for the sake of
argument, we keep the choice as simple as possible to reproduce the possi-
ble pathological behaviors that one can encounter when experimenting with
metadynamics.
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Figure 5 The value of gyration radius calculated on the heavy atoms for a trajectory
of 200 ps of MD for alanine dipeptide in the two minima. Note that the average values

of the gyration radius in the two cases are rather different, so this can be considered a
possible choice for a CV.
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The Width of the Deposited Gaussian Potential

The width(s) of the deposited Gaussian potentials is/are usually adjusted to
adapt to the underlying free-energy landscape. Therefore, a preliminary unbi-
ased MD run is generally performed, and the shape of the initial free-energy
well is estimated. In this way one might figure out how wide the metastable
basin is in the space of CVs. In a large system, to avoid performing extra
heavy computations, the final part of the equilibration run can be postpro-
cessed for this purpose. More specifically, for each CV, the probability density
along the sampled CV range can be computed and, by assuming that the under-
lying free-energy landscape is a quadratic minimum, a Gaussian can be fitted
on it. Under such assumptions, the addition of a Gaussian potential having
height k3T and a width equal to the standard deviation of the fitted Gaussian
can perfectly compensate the free-energy landscape so that the resulting land-
scape in the neighborhood should be flat. It should be taken into account that
metadynamics does not aim at compensating perfectly the free-energy land-
scape at each step, though it aims at doing it on average in the long run (either
completely, in normal MetaD of Section “Adaptive Biasing with Metadynam-
ics,” or partially, in WTMetaD of Section “Well-Tempered Metadynamics”);
therefore, the Gaussian width ¢ of MetaD is generally set as a fraction of the
standard deviation of such fitted Gaussian. One-half or one-third is generally
suitable. Choosing a smaller width would capture better the free-energy fea-
tures but would also give slower filling time and produce a steeper force that
could interfere with integrator stability and therefore produce irrecoverable
errors. Using a Gaussian fitting is done here with didactic purpose only: very
often one just calculates the standard deviation out of the trajectory. This is
illustrated in Figure 6.
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Figure 6 The probability of gyration radius calculated on the heavy atoms for a tra-
jectory of 200 ps of MD for alanine dipeptide for the C;,, minimum. The fitted normal

distribution is centered in 2.17 A and has standard deviation of 0.15 A.
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Moreover, it is worth noting that the chosen width for one region may
not be optimal for other regions. This is particularly important with those CVs
that present an anisotropic compression of phase space (see below in Section
“Adaptive Gaussians” for a discussion of this issue and a possible solution).

The Deposition Rate of the Gaussian Potential

The deposition rate for the Gaussian potential can be expressed as the rate
between the Gaussian height and the time interval between subsequent Gaus-
sian depositions, that is, w = w /7. This rate can thus be tuned by adjusting
both these parameters.

The choice of w is crucial in metadynamics simulations because this
parameter affects both the error and the speed at which the free-energy basins
will be filled. It is wise to make it small enough to reduce the error but on the
other side it must be sufficiently large to allow a reasonable filling rate of the
free-energy landscape and to allow resampling the same point in CV many
times. This balance will eventually produce accurate statistics that correspond
to a good estimate of the free energy.

To avoid abrupt changes in the total potential when adding new Gaus-
sians, one typically chooses the Gaussian height w; as a fraction of the thermal
energy kzT. A typical choice is on the order of 0.1 kcal/mol for systems simu-
lated at room temperature. Once this is fixed, the deposition time 7 is typically
adjusted to tune the deposition rate w = wg /7.

As a rule of thumb, this can be done through a short free dynamics as
shown in Figure 7. It is evident that the typical autocorrelation time of the CV
is of the order of a picosecond or less. This sets a rough estimate for z;, which,
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Figure 7 The value of gyration radius calculated on the heavy atoms for a trajectory
of 4 ps of MD for alanine dipeptide in the C,, minimum. The values are acquired at
each timestep of 2 fs.
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for the following examples, will be chosen as 1.2 ps. By choosing the 7 in this
manner, the system is able to relax between one deposition and the other, to
avoid placing the next Gaussian potential on top of the previously deposited
one. This latter situation would produce an effective Gaussian potential with
twice the height. In other words, this information encodes to some extent an

estimate of the diffusion coefficient in the collective variable space that appears
in Eq. [22].

A First Test Run Using Gyration Radius

With the parameters obtained from the analysis carried out above we can start
a MetaD run. The parameters are ¢ = 0.07 A, w = 0.1 keal/mol, 7 = 1.2 ps.
Using these parameters, we performed a 4-ns-long simulation. The time evolu-
tion of the CV is shown in Figure 8a. In a typical MetaD evolution the system
spends a bit of time in a single basin around 2.2 A of gyration radius, which is
progressively filled, and this allows jumping after a few ps to the next minimum
at 2.4 A. The system is progressively biased and can reach very elongated as
well as compressed states. While moving between the two extrema it should be
noted that, as a result of the already filled free-energy landscape, the system is
not stuck anymore in the starting basin: this is exactly the intended purpose of
metadynamics.

It is crucial here to observe the so-called “recrossing” events, which means
that the putative transition state is being explored by metadynamics many
times. This ensures that the interesting states are sampled exhaustively, which is
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Figure 8 The time evolution of the chosen CV along the metadynamics (a) and the
evolution of the bias (b).
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important (but not sufficient) to obtain a correct result. In this case, as the two
minima identified via straight MD are located at 2.1 A and 2.4 A one should
look carefully for a number of transition in these regions, which occurs sev-
eral dozens of times in the presented example. In realistic cases one may expect
recrossing events of the order of tens.

In Figure 8b the evolution of the negative values of the bias is shown,
which is the best approximation to the free-energy surface at a given time. It
is worth noting that one should not worry about the absolute value of the
bias to move progressively toward negative values, as the interesting features
reside in the free-energy differences within one single profile and not in their
absolute change from one time to the other. Interestingly, there is no sizable
barrier between the two metastable states. This already casts some doubts about
the quality of the CV employed. Indeed, if there is no barrier, one could have
expected the transition to happen spontaneously in a few ps of simulation.
This is a crucial point because critical judgment of consistency of both biased
and unbiased simulations are very important to determine the quality of the
results. Very often one can observe cases where an unexpected minimum occurs,
which has characteristics not justified by any structural stabilizing feature. In
such cases an unbiased MD run starting from a conformation taken from that
minimum could allow one to clarify if the metastability is real or if it is an
artifact of the CV configuration space coarsening.

An important point is shown in Figure 8a: in standard MetaD the exten-
sion of the explored portion of the CV domain increases with time. This gener-
ally gives access to higher energies and for many applications this has a negative
effect. As an example, in proteins, one can reach energies that allow the unfold-
ing of the secondary structure which, unless the algorithm is able to refold it,
completely invalidates the simulation. Very often one has to artificially limit
the exploration to prevent such effects by adopting confining potentials as dis-
cussed before. In our example the increased range explored implies that the
landscape presents small changes from one time to the other in the region of
interest, as the Gaussians are now deposited on a much broader range.

In Figure 9 (black lines) we report a set of free energies that are collected
every 400 ps. Within 400 ps the system is in fact able to sample the gyration
radius domain (2.1 A < RGyr < 2.5 A) several times; therefore, each realization
of the free energy can be considered as a new estimate of the landscape. Under
such conditions we can align all the landscapes by subtracting the average value
and it becomes immediately evident that the landscapes may be very different
from one another. This nonhomogeneity in the free-energy estimates is a source
of error that is referred as “hysteresis” and is generally considered to be the
most evident hint of a bad choice of CVs.

Frequently, there exist other significant diagnostics that can highlight
problems in the CV choice and may help in devising a more suitable CV.
For example, using an independent structural comparison consisting of a
different descriptor, such as root mean square deviation (RMSD) after optimal
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Figure 9 Average free-energy profile (cross-hatched thick profile) and associated error
bars for different free-energy estimates aligned on their average value (gray profiles).

fit,>% can reveal if the used CVs are resampling the expected states or if they
are moving the simulation in unwanted phase space regions. Consider as an
example alanine dipeptide in Figure 10, where the structural alignment with
respect to Cy,, and Cy, reference structure is reported. It is evident that
Cs,, appears only within the first 500 ps (RMSD < 1 A) of the simulation
and never reappears even if the corresponding value of the gyration radius
appears frequently in the simulation. In this case MetaD is not accelerating
the sampling between the target states although many recrossing events are
observed in the CV space.
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Figure 10 Time evolution of the radius of gyration (upper panel) along with Root
Mean Square Deviation (RMSD) after optimal fit onto C,  and C._ reference
structures.
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Figure 11 A representative chart of what may happen when making a wrong choice of
CVs in MetaD. In the bottom of each panel is shown a sum of the potential to illustrate
the effects on the estimated free-energy landscapes.

Figure 11 clarifies what happens in this system. Suppose we are interested
in the difference between state a and b in Figure 11, which correspond to the
Crax and Cy.q conformers, respectively. When performing MetaD along the
variable on the horizontal axis the forces are added only in this direction, and
the system is pushed away from minimum a thus reaching minimum b. This
jump may have produced a change in a “hidden” CV that could be due to a
peculiar free-energy landscape (as shown in Figure 11) or by a fortuitous jump
in a parallel valley that is kinetically accessible. Once reaching b, MetaD will
push the system in the valley located on the bottom (see Figure 11A) because the
MetaD force is acting only in the horizontal direction and cannot control any
further jump into the a basin, which is separated by a barrier. As a result, one
gets a free-energy profile that resembles the bottom basin almost exclusively,
leaving only a minimal trace of the initial basin (see Figure 11B). The system
will only jump back to basin a because of an overaccumulation of potential or
by a fortuitous thermal fluctuation (see Figure 11C). Whenever this occurs, the
free energy changes and becomes similar to that of the projection of the a basin
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onto the biased CV again (see Figure 11D). In this case the free-energy profile
may change considerably at distant times and, consequently, show hysteresis.

This scenario points to the fact that the selected set of CVs is not suitable
and a different choice should be made.

A Better Collective Variable: ® Dihedral Angle

To illustrate the significance of CVs selection in MetaD and in other enhanced
sampling schemes, the same calculation is now repeated but using the
Ramachandran angle ® as the CV. The ¢ was chosen according to the same
procedure outlined above to be 0.1 rad while keeping all the other parameters
identical.

The outcome using this CV choice is presented in Figure 12 and it is
evident, especially in the progress of the deposited bias, that the shape of the
deposited potential is conserved and grows approximately parallel to each real-
ization. This results in a more uniform error as shown in Figure 13 where all
the free energies are more consistent with one another.

Furthermore, the two metastable states are repeatedly visited as shown in
Figure 14 where in both cases there exist structures with an RMSD < 1A along
the whole trajectory. In the last case, the metadynamics run can be considered
to provide a reliable free-energy profile.

Conceptually, the change in CV can be regarded as a sort of warping of
the free-energy landscape. This is represented pictorially in Figure 15. In this

@ (rad)
Free energy (kcal/mol)

0 1000 2000 3000 4000
Time (ps)
(a)

Figure 12 Time evolution of the Ramachandran dihedral angle ® during metadynam-
ics (a) and evolution of the deposited bias over time (b).
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Figure 13  Average free-energy profile when using @ as the CV in metadynamics. The
error is reduced and the free-energy profiles (gray lines) are very coherent with one
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Figure 14 RMSD from the two C,, and C;,, reference structures during the metady-
namics run that uses the Ramachandran dihedral angle ® as CV in metadynamics.

case no barrier appears on the hidden CV and consequently forces applied by
MetaD are now in the direction connecting the two states.

Well-Tempered Metadynamics Using Gyration Radius

We turn here to describe the case of WTMetaD because recently it is becom-
ing widely applied and its error control and associated diagnostics differ slightly
from the case of the normal MetaD. In WTMetaD there is an additional param-
eter to be set, namely, AT, which technically regulates the decay factor of the
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Figure 15 A graphical interpretation of the deformation of the landscape induced by
the change of CV. Now no barrier appears on the hidden CV, and the two states do not
project on top of each other but instead are well separated.

Hidden CV
Hidden CV

potential deposition rate. As discussed in Section “Well-Tempered Metadynam-
ics,” this can be regarded as a factor that determines the effective temperature
of the enhanced CV. Thus, a wise way to choose AT is by having a rough esti-
mate of the barrier. In our case, as the barrier is expected to be 8 kcal/mol,
which is around 15 kT units, we set (T + AT) = 15T. This ensures that in the
long run the bias will allow passing the barrier or, in other words, that before
decreasing the Gaussian height dramatically a potential will be built that is able
to overcome the barrier.

Unlike MetaD, WTMetaD provides only an exploration limited to the low
free-energy region of the landscape. This is clearly visible from Figure 16 where
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Figure 16 The time evolution of the chosen CV along the metadynamics (a) and the
evolution of the bias (b).
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the space visited is limited to 2 A < RGyr < 2.6 A, which is remarkably less
than the non-well-tempered case. This is of course a big advantage over stan-
dard MetaD because the exploration can be restricted to only the interesting
region where activated processes take place and prevents the sampling of high
free-energy regions where irreversible transitions might occur. Another visible
difference is that the profiles (Figure 16b) are getting closer to one another as
time passes. This is the effect of the Gaussian height diminishing and, therefore,
the deposited potential converging. Moreover, because a correct WTMetaD is
expected to converge, one typically estimates the free energy from the final bias
potential without averaging.

Nevertheless, pathological CVs still show their “hysteresis” issues (see
the sudden change in profile at 2.8 ns, Figure 16b), which has a remarkable
counterpart in the CV evolution in the Figure 16a. This aberrant behavior gen-
erally arises from the system beginning to explore a different free-energy surface
after having performed a jump in a so-called “hidden” CV (see Figure 11). At
that stage the underlying free-energy landscape changes, and the system stays
trapped in a region, therefore adding more and more bias.

From these considerations, it becomes evident that the Gaussian height
evolution gives a hint about when this is happening as shown in Figure 17a.
Here, while the system seems to decrease the Gaussian height, as it is contin-
uously resampling the same CV space, at 2.4 ns a sudden jump appears. This
is usually associated with a jump into a nonsampled region where Gaussian
height increases. What happens from the structural point of view is that the
state Co,, is occasionally resampled. This is clearly visible from the RMSD,
which is reported in Figure 17b. In the schematic of Figure 11 this change cor-
responds to a jump on the hidden CV from basin b to the target basin of a.
Once in C5,,, the system finds a very narrow basin in free energy, which was

Gaussian height
(kcal/mol)

ol Tl | R R | AR ]

0 1000 2000 3000 4000
(b) Time (ps)
Figure 17 The time evolution of the height of the potential deposited (a) and the RMSD
with respect to the two C,_and C,__ states (b).
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not accounted for by the bias potential accumulated by WTMetaD (almost flat
in this region), so it starts accumulating potential to escape and eventually it
does at 3 ns, where it reaches once again Cs,. At this point the potential starts
washing away the changes because of the C-,, basin, and the old landscape is
retrieved, leaving the user in doubt about which is the correct landscape.

Once again, a bad choice of CVs makes the transition from C;,, to Cs,
rather fortuitous. This indicates that the selected CV is not a good variable for
biasing, with either WTMetaD or MetaD.

It may also happen in WTMetaD that the growth of the bias potential
is a poor diagnostic tool for detecting “hysteresis,” especially when the system
shows transitions at very long time and at low Gaussian height. In this respect
the probability histogram of the CVs calculated over different trajectory seg-
ments can be more indicative of underlying problems. gi)deed, in WTMetaD

the system should converge to a probability P(s) « e *sT+AT) Any divergence
from this behavior should be looked at with caution as it might be a signature
of poor convergence. This is evident in Figure 18 where the trajectory in the
CV space is divided in four blocks of 1 ns each, and the probability distribu-
tion is calculated for each block. Note that the third and the fourth blocks are
remarkably different from the first two and from one another.

Well-Tempered Metadynamics Using Dihedral Angle @

We revise here the last example to show how the diagnostics change when the
CV is well chosen. As before, we adopt the ® Ramachandran dihedral angle as
a biased CV.
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Figure 18 The probability distribution of finding the system in the CV range in four
blocks of the simulation. It is evident that this distribution does not converge.
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Figure 19 (a) CV evolution with time. (b) The evolution of the best estimate of the
free-energy landscape from WTMetaD when using ® as CV.

While the time evolution of the free-energy landscape (see Figure 19)
is similar to the conventional MetaD case (Figure 12) we point out that
WTMetaD is depositing less potential than the standard case, because of the
diminishing Gaussian height.

The evolution of Gaussian height is also more regular as it can be seen
in Figure 20a. Discontinuities in the decay of the Gaussian height are frequent
and coincide with the jumps between C-,, and C,,, states, which are repeatedly
visited as seen in the RMSD plot (Figure 20b).

Finally, the probability evolution is also more homogeneous with time as
one might expect in the case of no hysteresis (see Figure 21).

ADVANCED COLLECTIVE VARIABLES

As discussed in the previous section, one of the most difficult issues in run-
ning metadynamics simulations is that of choosing a proper set of CVs. The
limited reliability of metadynamics calculations is often mistakenly perceived
as a limitation of the method although the real reason is generally due to the
descriptors used.

A good CV that is able to distinguish reactants and products may not
be sufficient in driving the reaction reversibly. This is due to the fact that a
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(a) The time evolution of the Gaussian height for WTMetaD with ® CV.
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Figure 21 The probability distribution of finding the system in the CV range in four
blocks of the simulation. It is evident that this distribution converges smoothly and
consistently presents a higher probability for angles corresponding to the two metastable

states.

change that is observable during a process might be triggered by a different
(and hidden) physical cause. Thus, driving the observable is not guaranteed to

facilitate the transition.

We also discussed how important it is to devise a CV that can also produce
a force in a direction that permits the system to travel between all relevant

configurations.
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For these reasons it is typically more useful to explore multiple sets of
CVs rather than to tune the other metadynamics parameters. Moreover, moving
toward a better sampling by attempting various CV sets always implies a better
understanding of the physicochemical process being studied.

Given the inherent difficulty of making such a choice, much effort in the
past decade has been focused on developing CVs suitable to describe correctly
a variety of conformational changes. We review here a few of the most popular
choices used with metadynamics but which can also be used in other schemes
like umbrella sampling, thermodynamic integration, and steered molecular
dynamics.

Path-Based Collective Variables

The computational cost of metadynamics can scale as SNcv where S is the extent
of the CV space and Ny is the number of CVs used. Often, it is inherently diffi-
cult to reduce Ny because of its nature of being intrinsically multidimensional.
For example, protein folding is due to an interplay of backbone flexibility,
hydrogen bonding, hydrophobic collapse, and dehydration intertwined with
one another. Another example is chemical reactions in enzymes involving sev-
eral hydrogen bonds and backbone distortions. Sampling extensively all those
degrees of freedom independently is of little help because most of them move in
a concerted fashion, along a hypothetical one-dimensional reaction tube that
changes character as one progresses from reactant to products. The need to find
a free energy along an adapted “reaction tube” was first perceived by Ensing
and Klein’! who performed an explorative metadynamics run, followed by a
refinement through an umbrella sampling calculation along the obtained min-
imum free-energy path. Later on a general functional form was found for this
“reaction tube” to be sampled directly through MetaD, which is the purpose
of the so-called path collective variables.

By assuming that the user already has M available snapshots {g(i)}
(also called “nodes”) that are representative of the transition and that can be

obtained via high temperature MD or steered MD, a progress variable can
then be built:3*

1 Zj\il(i —Dexp(—4llg =gl

M=l Zj\il exp(=4llg =gl

s(q) = [24]

where 4 is a parameter that should be chosen according to the average inter-
frame distance, and ||qg — g(?)|| is the distance between the current molecular
dynamics snapshot and the g(i) node. Intuitively, this variable provides a con-
tinuous fractional index ranging from O (the reactant) to 1 (the product) that
allows one to map the conformations along an ideal “progress along the path”
variable.
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Progress along the path Distance from the path (dist. units)
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Figure 22 A two-dimensional example of the path variables and the foliation induced
by the progress along the path (a) and the distance from the path (b).

Similarly, a complementary variable can be defined that provides the dis-
tance from the closest node:3*

M
1 ~.
ag) =~ 2:, exp(—Allg — G [25]

A two-dimensional example is shown for a number of nodes in Figure 22.
The foliation induced by Eq. [24] (Figure 22a) is similar to that produced by
Voronoi tessellation.’? The gradient of the variable changes direction along the
path to adapt to the reaction character. Nevertheless, it shows some patho-
logical behaviors at specific points where the indexing can change abruptly;
this typically happens at large distances from the path. That is why defining
the distance from the path by Eq. [25] (Figure 22b) is particularly helpful: the
exploration of this variable can be artificially limited to prevent high-distance
regions from being sampled. Alternatively, this variable can be used as an extra
CV for metadynamics, in an attempt to explore paths that are far from those
defined by the nodes.

In this framework the definition of the metrics ||g — g(?)|| plays a key role.
An arbitrary reduced representation could be used in the spirit of the string
method in CV space.?® In general, the Cartesian coordinates of a subset of
atoms are widely used and compared via mean square deviation after optimal
alignment:3°

2
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where R(q, (7)), 4 is the optimal alignment matrix that superimposes g to g(i)
and cm(q), is the @ component of the center of mass of g. This metric was used
in a variety of contexts including conformational transitions,>*>3 enzymatic
catalysis,* chemical reactions,’>*® and folding.’” Notwithstanding the sim-
plicity in its setup, the choice of the initial nodes must be done carefully. This
set of “omnicomprehensive” Cartesian coordinates, although able to include
most of the effects, is likely to increase artificially the distance between the
molecular dynamics run and the nodes because multiple and irrelevant sources
of noise contribute to it. Therefore, other metrics were proved to be useful like
the comparison of contact maps,®” which correctly detected the unfolded ver-
sus molten globule transition in folding. Also, the chirality indexes®® that rely
on the internal degrees of freedom associated with backbone conformations
were found to be reliable.

An additional benefit from using this set of CVs is that one is not lim-
ited by the rough initial input. Instead, an iterative procedure can be set up
to refine the frames and end up with an optimal description for the metrics
employed.3* This makes it possible to provide a better description of the sad-
dle point, which can be quantified by computing the committor probability.’’
This procedure can be conveniently simplified by using an iterative steered-MD
procedure as shown in Refs. 54, 55. More recently, a new integrated procedure
was also introduced®® on the basis of performing MetaD along the path while
simultaneously recording the position orthogonal to the path. At regular inter-
vals along the simulation, the path is evolved. At the end of the procedure it is
possible to obtain both the free-energy landscape along the path and the opti-
mized path. This is possible because MetaD allows the free energy along the
path to adapt while the definition of the path itself is changed.

Collective Variables Based on Dimensional Reduction
Methods

Another way to tackle the problem of defining the CVs is to renounce
“general-purpose” CVs (e.g., number of hydrogen bonds, coordination of
water, gyration radius in a typical folding problem) and to deduce them
directly from the behavior of the system during the simulations.

The objective of these methods is to obtain a representation of the system
in terms of a very small number of parameters. Typically, those parameters will
be a complex but automatically determined function of the components of an
intermediate representation of the system, in which the dimensionality of the
problem can involve as many as several hundred degrees of freedom. Examples
of such an intermediate representation might be the position of the heavy atoms
in alanine dipeptide, the C, carbons, or all the residue-to-residue distances in
a protein.

The most straightforward use of this intermediate coarse-graining rep-
resentation is through principal component analysis (PCA)®! of a trajectory.
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This produces a set of eigenvectors and eigenvalues that decompose the system
motion into different amplitude motions acting on an average conformation. It
is then possible to use the projections of the position of the system onto a sub-
set of the eigenvectors as CVs in a MetaD simulation.®? Generally, projections
are performed onto the eigenvectors connected to large amplitude motions to
accelerate slow conformational transitions.? It is worth noting the strong sim-
ilarity with conformational flooding?” in which the potential from the PCA is
calculated only once and is not built adaptively as in MetaD.

The system under study can display many basins, each of them with a
peculiar average structure and a specific set of eigenvectors, which might be very
different from one another. For this reason Tribello and coworkers developed
“reconnaissance metadynamics”®* in which the dynamics is analyzed on the fly
and onto which a Gaussian mixture model is fitted. The system is then assigned
to one of the basins defined by the Gaussian, and the potential is added in one
dimension (the distance from the center of the fitted Gaussian). This creates an
“onion-like” potential that builds up to a point where it is detected by its fall
into a new basin where the Gaussian mixture fitting is repeated. This method
is very effective in sampling the configurational space, but no straightforward
procedure exists yet for extracting free-energy profiles from the obtained tra-
jectories.

Other methods exist besides PCA-based approaches that are able to
extract a pattern from computed statistics. One of them is the so-called “classi-
cal multidimensional scaling method”®® in which a fictitious, low-dimensional
distribution of points is calculated to reproduce the distance relations among
the points in the intermediate dimensionality. An example is the map of the
distances in RMSD for configurations of dialanine. There, the dihedral angle ®
rotation is very similar to the distances that one would obtain from a suitable
distribution of points along a ring. This implies that not all the coordinates of
the intermediate representation are useful, because the landscape in this case
is effectively two-dimensional.

This idea of using a high-dimensional data to fit a low-dimensional rep-
resentation was exploited by Spiwok®® who used this scaled representation to
define the following modified path collective variable

S prexp(-Allg -Gl
M ~ .
> exp(-Alig - G

where the value of P is a general (vectorial) property of the node X(i) that can be
chosen arbitrarily. In particular, the authors chose the coordinates P,, Py, and
P, from an isomap multidimensional scaling derived from extensive sampling
of a small molecule, much in the spirit of the work from Das et al.®” In this
way MetaD on that scaled representation can be performed effectively.

More recently, Ceriotti et al.®® further developed the multidimensional
scaling concepts for molecular representations and proposed a scheme called

(27]

sp(q@) =
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“sketch-map.” Their approach is a filtered multidimensional scaling algorithm
that can reproduce the distances of the intermediate representation in a specific
window of lengths, while coarsening the distances that are both higher and
lower than this window. They proved this makes the problem more tractable
and allows for a much broader range of scaling possibilities compared to stan-
dard multidimensional scaling. Eventually, they also figured out a novel way to
perform MetaD that can be used specifically with sketch-map.®’

Template-Based Collective Variables

The predictive simulation of protein folding at atomistic resolution is one of
the grand challenges in the biophysical community and in statistical mechanics.
The problem consists in predicting, with only the knowledge of the residues’
sequence, the most stable state, which, in general, is known to be associated
with its function. General purposes CVs, as distance or coordination numbers,
are ineffective in reversibly folding, even for a small sequence of aminoacids.

Therefore, because proteins generally exist as one of several recurrent
structural motifs, it is plausible to use a CV that is a similarity measure with
minimal building blocks of one of those motifs. One then evaluates the num-
ber of times this building block is present in the actual MD snapshot. This is
the central idea behind the template-based collective variables of Pietrucci and
Laio.”®

In detail they first identified an ideal building block for every structural
pattern that could be either an a-helix, a parallel g-sheet, or an antiparallel
p-sheet. They did that by isolating from the CATH’! database all segments
containing that specific motif using the STRIDE’? definition and then by clus-
tering them with distance-RMSD (dRMSD) comparison. The choice of dRMSD
makes the computational comparison particularly efficient because it avoids
calculating the rotation matrices and their derivatives. Once the center of the
cluster is identified for each motif, the ideal structural motifs d,, dyura—p> danei—p
can be retrieved as a list of pairwise distances. Each template is used to compute
three distinct CVs: a-helix content, parallel g-sheet content, and antiparallel
p-sheet content. For each MD snapshot the structural motif content of a given
consecutive protein segment can be estimated simply by (e.g., for the a-helix
case):

S, = Y n[dRMSD(d(g;).d,)] [28]

where d(g,) includes the atoms of the block of three residues starting with atom
q;- The function 7 assigns more weight to those structures having a low dRMSD
with respect to the template structure and therefore can be seen as a counter.
Its functional form is:

1= (dRMSD/ry)8
1 — (dRMSD/ry)12

#[dRMSD] = [29]
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where 7, is a radius that discriminates if the segment is similar to the template
or not and is generally set to 1.0 A. It is important to note that in the dRMSD
calculation, only C,, N, C;, and carbonyl oxygen atoms are included, and that
the entire sequence is scrolled by steps of a single residue. The scrolling pattern
depends on the type of secondary structure.

In this way the authors successfully produced a varied ensemble of sec-
ondary structures. More recently, these variables were used in conjunction with
an extensive bias exchange MetaD (see Section “Bias Exchange Metadynam-
ics”) on VALG60 to sample, with atomistic resolution, plausible folds containing
secondary structures’? well beyond the variety contained in the PDB database.

Importantly, such strategy could be adapted for use well beyond the actual
scope of protein folding and might be useful where other kinds of template are
available.

Potential Energy as a Collective Variable

In the last three subsections we saw how carefully designed CV can be used
as suitable reaction coordinates. We consider here the possibility of using the
potential energy as a CV.

This idea was first proposed by Bartels and Karplus’* in the context
of adaptive umbrella sampling, and later used for plain metadynamics by
Micheletti et al.*> When a flat histogram distribution of potential energy is
enforced, the system under investigation is able to freely explore values of
the potential energy in a large window. When the potential energy grows,
the explored conformations are equivalent to those explored at a higher
temperature, so that, roughly speaking, the simulation performs a sort of
annealing where the effective temperature is allowed to increase and decrease.
At high temperature, the effective barriers are largely decreased, and the
system is able to cross free-energy barriers easily. In this sense, achieving a flat
histogram distribution of potential energy can be considered as comparable
to performing a multicanonical simulation”® and is also strictly related to
Wang-Landau sampling.”®

In a later work, Bonomi et al.”” showed that it is possible to perform
a WTMetaD simulation on the potential energy by sampling the so-called
“well-tempered ensemble.” This ensemble is characterized by a parameter y,
which is related to the usual parameter AT by y = #. In the well-tempered
ensemble the distribution of the potential energy is not flat but instead is
related to the canonical distribution P(U) by Pyrr(U) « P(U)!/7. The effect
of the y parameter is to increase the fluctuation of the potential energy by a
factor y. This should be compared with a multicanonical ensemble,”® where
the fluctuations of the potential energy are infinite. In Ref. 77 the authors also
showed how this amplification of the potential energy fluctuations can be used
in practice to enhance the efficiency of parallel tempering simulations and in
particular how this method can be used to decrease the number of replicas



&

36 Free-Energy Calculations with Metadynamics: Theory and Practice

required for parallel tempering simulations by orders of magnitude. Moreover,
thanks to a suitable reweighting scheme (see Section “Reweighting”), it is
possible to extract the free-energy landscape as a function of any a posteriori
chosen CV. The combination of parallel tempering and well-tempered ensem-
ble can also be used in conjunction with plain metadynamics, where standard
collective variables such as number of hydrogen bonds or hydrophobic-core
size are also biased.”®

Interestingly, in a recent paper it has been shown that it is possible to
dissect the potential energy and use as a CV only a relevant portion of it,
namely, the Debye—Hiickel interaction between two molecules.”” Although in
that paper this CV was biased using steered molecular dynamics, the extension
to umbrella sampling or metadynamics is straightforward.

IMPROVED VARIANTS

Besides optimizing the choice of the CVs, several variants of the basic
schemes outlined in Sections “Adaptive Biasing with Metadynamics” and
“Well-Tempered Metadynamics” have also been introduced. We will discuss
here three of them, which are based on the idea of running multiple metady-
namics in parallel with different degrees of coupling. We will also describe a
recently introduced scheme aimed at simplifying the choice of Gaussian width
and at adapting it on the fly.

Multiple Walkers Metadynamics

2

As pointed out in Section “Adaptive Biasing with Metadynamics,” a critical
choice in metadynamics involves the deposition rate. In particular, a higher
deposition rate is required for a faster initial filling of the free-energy land-
scape, but that would affect the final error. The multiple walkers algorithm is
designed to exploit concurrent metadynamics simulations to allow a very fast
filling albeit using a slow deposition rate.

In multiple walkers metadynamics® N,, metadynamics simulations (also
referred to as walkers) are run concurrently, possibly on different machines. All
these simulations contribute to the growth of a unique bias potential, which
thus grows at a speed that is N,, times larger than for a single simulation.
It has been shown heuristically (see Ref. 80) and analytically for a Langevin
system (see Ref. 42) that the resulting error is the same as that expected from a
single walker using the same Gaussian height and deposition time. This means
that when using N,, walkers a filling time acceleration by a factor N,, can be
obtained without increasing the error or, alternatively, the squared error can be
decreased by a factor N,, without increasing the filling time.
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In multiple walkers metadynamics there is no efficiency gain in computing
time, as the same accuracy could be obtained by performing just a single simu-
lation N,,-times longer. However, because the walkers are weakly coupled, this
algorithm can be run easily on a parallel machine or even on a weakly inter-
connected cluster. Only a shared file system is required to allow interwalker
communication in typical implementations. Moreover, it is not even necessary
to start all the walkers at the same time, and there is no practical problem if
one or more of the simulations is interrupted at some point.

Multiple walkers metadynamics can also be used in the well-tempered
algorithm.®! In the long time limit the error prefactor will be decreased when
increasing the number of walkers because the walkers will provide independent
statistics biased by the same potential.

As a final remark, we note that the theoretically perfect scaling of multiple
walkers metadynamics can be reached only if the walkers are started from inde-
pendent configurations taken from the proper equilibrium distribution. This
can be a difficult task, as the free-energy landscape is not known a priori.

Replica Exchange Metadynamics

Replica exchange molecular dynamics is a technique where many simulations
are performed at the same time using different control parameters. A typical
example is parallel tempering,” where different temperatures are used. Hamil-
tonian replica exchange,* however, provides a more general formulation where
different force field parameterizations are used in different replicas. Replicas are
ordered to form a sort of ladder. The first step typically represents experimental
conditions whereas the last step represents an artificially modified system (e.g.,
with a fictitiously high temperature in parallel tempering) where transitions are
more likely to be observed. Coordinate swaps are attempted with a chosen time
interval. This brings information from highly ergodic modified simulations to
the typically frustrated room temperature simulation. To achieve sampling of
the canonical ensemble, coordinate exchanges must be accepted according to a
Metropolis rule where the acceptance is given by

—ﬂiUi(q/’)—ﬂ/U,‘(q;’)
a=min|1, 4 [30]
’ e~ Pilian-pUjq)

Here U; is the potential energy used for replica 7, ; its inverse thermal energy,
and g; represents the coordinates of all the system for the ith replica.

Replica exchange methods are typically expensive as they require many
(sometimes hundreds) simulations to be run synchronously, often on a large
supercomputer facility. Their advantage is that they allow us to accelerate sam-
pling using a minimal amount of a priori knowledge about the specific transi-
tion under study. This contrasts with metadynamics, which is very cheap from
a computational standpoint but requires physical insight to select proper CVs.
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Thanks to their complementarity, metadynamics and replica exchange
can nonetheless be optimally combined.!” To do so one has to perform N,
simultaneous metadynamics simulations and adjust the Metropolis criterion to
include the bias potential

o (U +Vitstap.n ) =B (Uiap+Vi(staan

= min| 1 1
O = R S S @)+ Vi@ ) (U, 4 Vi) ) [31]

The combined algorithm has the advantage with respect to metadynamics
of accelerating all the degrees of freedom of a system without any a priori
knowledge, albeit being more expensive. Consequently, if the high temperature
replica is ergodic enough, hysteresis effects (see Section “A First Test Run
Using Gyration Radius”) because of a suboptimal choice of the CVs are
strongly moderated or even disappear. When compared with replica exchange
alone, replica exchange metadynamics improve the sampling of energetically
unfavorable points such as metastable minima or transition states, provided
they are defined on a CV space that is a priori identifiable. In this sense, replica
exchange metadynamics takes the best from both worlds.

Notably, metadynamics can also be combined with replica exchange tech-
niques other than parallel tempering, for example, solute tempering. %3

Bias Exchange Metadynamics

One of the problems in metadynamics is that the maximum number of CVs
that can be used in practice is limited. In particular, it is very difficult to con-
verge metadynamics simulations performed using more than three CVs. This
limits the applicability of the method to cases where a few appropriate CVs
are known a priori. However, if one is able to define a super-set of CVs, which
is very likely to include the appropriate CVs, multiple metadynamics simula-
tions can be conveniently combined by means of bias exchange metadynamics
(BEMD).84

In BEMD, several metadynamics simulations acting on different CVs are
performed at the same time. Each of the simulations employs one or more CVs,
and there might be overlap between the sets of CVs chosen for each simu-
lation. For instance, the first replica could use two-angle CVs y and ¢, the
second replica could use only ¢, and the third only y. Then, from time to time,
coordinate exchanges are proposed and accepted with the usual Metropolis
criterion. Like parallel tempering simulations, if the acceptance rate for the
exchange moves is sufficiently high and one replica samples ergodically the
configurational space, ergodicity is ensured in all of them. Whereas in parallel
tempering the ergodic simulation is typically the one at the highest tempera-
ture, in BEMD any of the replicas could be ergodic depending on how virtuous
the CV(s) used for that replica is(are) to describe the relevant conformational
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transitions. In addition, far fewer replicas are needed than for a conventional
parallel tempering-metadynamics calculation.

Using BEMD it is thus possible to replace an (unfeasible) metadynam-
ics that would use ten or twenty CVs with ten or twenty weakly coupled
one-dimensional metadynamics simulations and retain an accuracy that is
determined by the replica containing the optimal CV. Moreover, the statistics
of each of the replicas benefits from the exchange. Accordingly, the exploration
of phase space by each replica is much higher compared to that of a simple
MetaD. We finally point out that in BEMD the statistics produced by all
the replicas should be used to calculate the final free-energy landscape via a
reweighting procedure.*®

Adaptive Gaussians

Up to this section, the shape of the repulsive potential adopted by MetaD was
assumed to be of the form of Eq. [11] with o, fixed at the beginning of the
simulation. As presented in Section “Metadynamics How-To,” the variance of
the CV from a simple MD run is used in devising the values of each ¢, so,
this value may change dramatically depending on the starting configuration.
This is what might happen in the case of a protein folding problem, assuming
the use of a set of distances as CVs. While the folded state is well defined and
the variance measured for many CV might be small, this is not the case for an
unfolded state that is slowly diffusing and is moving in a broad and featureless
free-energy landscape requiring a larger o,.

In addition, the problem of selecting an adequate ¢ is tightly coupled with
the definition of the CVs. For small molecules binding to a protein, coordina-
tion numbers are often used. These have a sigmoidal functional form that is
tailored to change from one to zero when the small molecule is unbinding,
but remains constant at values close to zero when the substrate is unbound.
In this last case the free dynamics will provide very small fluctuations in CV
toward zero, compared to that calculated for the bound state where the value
is changing.

An additional intricacy to be considered is that two variables are often
coupled as in the case of the two Ramachandran dihedral angles ® and .
These angles contain three atoms in common. Therefore, some sort of coupling
should be introduced into the scheme to account for their interdependence.

We recently proposed?® a more general multivariate Gaussian instead of
Eq. [11]:

t/TG

Vs, t) = ch exp —%2 (sa -5, (irc)) U{;’i(sﬁ = sp(itg)) [32]
i=1 a,p

Here @ and p runs over the biased CVs and ¢ is a matrix that, unlike the stan-
dard MetaD case, might contain nonzero diagonal elements. Furthermore, in
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this scheme the ¢ matrix is not fixed at the beginning of the simulation but
adapts on the fly. To find this ¢ we proposed two approaches: one termed “Dy-
namically Adapted” (DA) MetaD and the other “Geometry Adapted” (GA)
MetaD.

In the DA scheme the ¢ matrix is determined with an estimate over the
space traveled in CV space:

t
asﬂ(t) = i/ dt’[sa(t’) — Ea(t’)][sﬂ(t’) - Eﬂ(t’)] exp[—(t —t')/tp] [33]
’ ™D Jo

where the parameter 7, is a typical time over which the drift is calculated.
Intuitively, this is the time span that the Gaussian potential has to keep track
of and is the only parameter to be set. 5,(?) is the average position over the last
portion of the trajectory defined as:

5,0 = — dts o) expl=(t — )/ 7p] [34]

The advantage of this scheme is that the system detects the underlying landscape

and adapts to it on the fly. A different approach is the GA scheme that takes into

account only the compression of the phase space induced by the definition of the

CV. In GA the ¢ matrix depends uniquely on the instantaneous conformation
through

2 0s (6]) asﬂ(q)

s D=6 Y5 [35]

In this formulation the only parameter to be set is o;, which is the effective
extension of the Gaussian measured in the Cartesian space of atomic coordi-
nates.

It is worth highlighting that in both formulations only one parameter has
to be set and it replaces all the individual o, required by standard MetaD, to
reduce substantially the number of parameters.

In addition, such schemes change both the width and orientation of the
Gaussian potential on the fly thus taking into account the local coupling within
variables (for the GA) or the local correlations in the diffusion matrix (for
the DA).

In both cases, an estimate of the free energy cannot be done with the usual
protocol because changing Gaussian width corresponds to using variable-size
bins in the estimation of a probability. The correct free energy can be retrieved
through a Torrie—Valleau-like formula® applied to the well-tempered case,
when, for long simulation times, the bias increases constantly over the whole
domain:

E(s,t) = —kpTlog N(s,2) — V(s,1). [36]



Conclusion 41

WT-MetaD

- £0= I50 ><I1O31
t; =500 x 10°
t, = 1000 x 10°

ty= 1500 x 103
12 =2000 x103/ _

WT-MetaD+DA
—_—

r0=éo x 103I

t; =500 x 10°
t, = 1000 x 10°
t5= 1500 x 10°

Potential energy
N

5t 4
61 L 4 -
7k b ik 1
_8 ! ! ! ! 1 L L L Il Il
-3 —2 -1 0 1 2 3 —2 -1 0 1 2 3
X X

(a) (b)
Figure 23 A one-dimensional Langevin model potential (black thick line) on which
WTMetaD is applied (a) and on which WTMetaD coupled with the DA scheme is
used. In dashed gray line the estimate of the free-energy landscape at different times
along the simulation. The DA scheme always delivers a better and faster converging
free-energy landscape. (Reprinted (adapted) with permission from Ref. 35. Copyright
(2012) American Chemical Society.)

The improvement over standard metadynamics is remarkable as shown
in Figure 23 for the case of a one-dimensional Langevin model. While standard
WTMetaD may fail whenever o is chosen too large, the DA scheme automati-
cally tunes to the feature of the energy landscape.

CONCLUSION

Metadynamics is an established method aimed at accelerating molecular
dynamics simulations and subsequently recovering free-energy landscapes.
Its power and flexibility arise from the fact that it allows us to exploit the
chemical and physical insight of the process under investigation to optimally
spend the computational effort. However, in spite of its apparent simplicity,
using metadynamics is nontrivial due to the input parameters that should
be tuned for the specific application and also to the difficulty in choosing
the proper collective variables for the simulation. Nevertheless, when done
properly it also allows a deep understanding of the process under investigation
to be reached, which is the ultimate goal of performing molecular simulations.

This chapter provides an introductory guide that should allow a prac-
titioner to choose the input parameters of a metadynamics simulation and
to optimize them for his/her own specific application. A particular focus was
placed on avoiding the typical mistakes that can be done when preparing such
a simulation and on how they can be solved practically. An assessment of the
most widespread variants of the method was also outlined. This chapter is not
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intended to be complete, as some of the most recent improvements have not
been discussed (see, e.g., Refs. 85-90). Nevertheless, this introduction will be
of value as a starting point for further explorations in the literature.
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APPENDIX A: METADYNAMICS INPUT FILES WITH
PLUMED

In this section we want to introduce some typical input files to perform
MetaD and WTMetaD by using the PLUMED plugin in its most recent version
2.0.26 PLUMED is an open-source software that consists of a library enabling
users to perform various enhanced sampling methods (among which is MetaD).
PLUMED is interfaced and can be combined with a variety of MD codes,
including GROMACS,* NAMD,’! LAMMPS,? and Quantum-ESPRESSO.%3
These interfaces allow a modeler to use several free-energy methods in a variety
of fields thus fostering the applicability, dissemination, and cross-validation of
those techniques, at various levels of theory. Moreover, PLUMED provides a
single executable that allows PLUMED to be used as a stand-alone tool.

For the examples carried out in Section “Metadynamics How-To” we
used the GROMACS 4.5.5% classical MD engine. In all the following examples
energies are reported in kcal/mol and distances in A.

PLUMED is not provided with GROMACS code but is separately
downloadable from http://www.plumed-code.org. It requires the user to apply
a patching procedure and to recompile the MD software according to the
procedure reported in its manual. After doing that, GROMACS is simply
instructed to use PLUMED on the command line (e.g., mdrun -plumed
input.dat).

The first example refers to the case where MetaD is performed on gyration
radius reported in Section “A First Test Run Using Gyration Radius.” Note
that in PLUMED one can also monitor other variables that might be helpful in
checking the results of the simulation (in this case ® and ¥ dihedral angles):

Example

# choose units - by default PLUMED uses kj/mol, nm, and ps
UNITS ENERGY=kcal/mol LENGTH=A

# these three lines define the atoms involved in the group
# named “all”

# the name of the group is arbitrary. If not defined PLUMED
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# gives a default

all: GROUP ATOMS=1,5,6,7,9,11,15,16,17,19

# this defines the gyration radius using a group

# defined by atoms in “all” and this value will have name “rg”
rg: GYRATION ATOMS=all

this line sets the metadynamics hills height (HEIGHT) in
kcal/mol

and deposition time (PACE) in timestep. Here each
timestep is 2 fs.

this produces also a HILLS file containing the

center and widths of Gaussians

meta: METAD ARG=rg SIGMA=0.07 HEIGHT=0.1l PACE=600

# additional variables can be set to monitor the simulation
# Phi:

tl: TORSION ATOMS=5,7,9,15

# and Psi:

t2: TORSION ATOMS=7,9,15,17

# This produces a COLVAR file that contains the

# values of the variables tl and t2

# calculated every STRIDE steps, which can be more often than
# HILLS

PRINT ARG=tl,t2 STRIDE=100 FILE=COLVAR

H H H HF H H

At the end of the run one obtains three output files from PLUMED: a log-
file, a COLVAR file that is produced by the PRINT command, and a HILLS file
that is produced by the METAD. The PLUMED logfile in GROMACS is embed-
ded in the md.log file and the user is strongly encouraged to explore it to
understand if PLUMED has interpreted the commands correctly. The COLVAR
file reports the time series of the CVs that are included in the input, and the
HILLS file reports the centers, the widths, and the heights of the repulsive
Gaussian potentials added by MetaD. At the end of the simulation one can
calculate the sum of the deposited potential by using the standalone executable
of PLUMED with the command plumed sum hills --hills HILLS.

In the second example we report the input from Section “A Better Collec-
tive Variable: ® Dihedral Angle” where the ® dihedral angle was used. Please
note that adding more arguments in the ARG field and corresponding values in
SIGMA allows PLUMED to perform multidimensional metadynamics.

Example

UNITS ENERGY=kcal/mol LENGTH=A

all: GROUP ATOMS=1,5,6,7,9,11,15,16,17,19

rg: GYRATION ATOMS=all

tl: TORSION ATOMS=5,7,9,15

# now METAD takes tl as an argument and the sigma is changed
# according to its fluctuation
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# note that you can give as ARG only a CV which is already
# defined

meta: METAD ARG=tl SIGMA=0.1 HEIGHT=0.1 PACE=600

# this variable again is only monitored in COLVAR

t2: TORSION ATOMS=7,9,15,17

PRINT ARG=tl,t2 STRIDE=100 FILE=COLVAR

Note that the TORSION collective variable is now periodic. The
sum_hills tool of PLUMED knows automatically that the domain is
periodic.

As a last example we report the use of WTMetaD as discussed in Section
“Well-Tempered Metadynamics Using Dihedral Angle ®.”

Example

UNITS ENERGY=kcal/mol LENGTH=A
all: GROUP ATOMS=1,5,6,7,9,11,15,16,17,19
rg: GYRATION ATOMS=all
tl: TORSION ATOMS=5,7,9,15
# this is a multiple line command
# BIASFACTOR and TEMP are required to enable
# well-tempered metad
METAD
LABEL=meta
ARG=t1l SIGMA=0.1 HEIGHT=0.1 PACE=600
BIASFACTOR=15 TEMP=300
... METAD
t2: TORSION ATOMS=7,9,15,17
PRINT ARG=tl,t2 STRIDE=100 FILE=COLVAR

More information regarding PLUMED and the various tools included
in it along with some more tutorial examples can be retrieved from
http://www.plumed-code.org.
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