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1.1 Introduction

Software fault localization, the act of identifying the locations of faults in a
program, is widely recognized to be one of the most tedious, time-consuming,
and expensive — yet equally critical - activities in program debugging. Due to
the increasing scale and complexity of software today, manually locating faults
when failures occur is rapidly becoming infeasible, and consequently, there is a
strong demand for techniques that can guide software developers to the locations
of faults in a program with minimal human intervention. This demand in turn has
fueled the proposal and development of a broad spectrum of fault localization tech-
niques, each of which aims to streamline the fault localization process and make it
more effective by attacking the problem in a unique way. In this book, we catego-
rize and provide a comprehensive overview of such techniques and discuss key
issues and concerns that are pertinent to software fault localization.

Software is fundamental to our lives today, and with its ever-increasing usage
and adoption, its influence is practically ubiquitous. At present, software is not
just employed in, but is critical to, many security and safety-critical systems in
industries such as medicine, aeronautics, and nuclear energy. Not surprisingly,
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this trend has been accompanied by a drastic increase in the scale and complexity
of software. Unfortunately, this has also resulted in more software bugs, which
often lead to execution failures with huge losses [1-3]. On 15 January 1990, the
AT&T operation center in Bedminster, NJ, USA, had an increase of red warning
signals appearing across the 75 screens that indicated the status of parts of the
AT&T worldwide network. As a result, only about 50 percent of the calls made
through AT&T were connected. It took nine hours for the AT&T technicians to
identify and fix the issue caused by a misplaced break statement in the code.
AT&T lost $60 to $75 million in this accident [4].

Furthermore, software faults in safety-critical systems have significant ramifica-
tions not only limited to financial loss, but also to loss of life, which is alarming [5].
On 20 December 1995, a Boeing 757 departed from Miami, FL, USA. The aircraft
was heading to Cali, Colombia. However, it crashed into a 9800 feet mountain.
A total of 159 deaths resulted; leaving only five passengers alive. This event
marked the highest death toll of any accident in Colombia at the time. This acci-
dent was caused by the inconsistencies between the naming conventions of the
navigational charts and the flight management system. When the crew looked
up the waypoint “Rozo”, the chart indicated the letter “R” as its identifier. The
flight management system, however, had the city paired with the word “Rozo”.
As a result, when the pilot entered the letter “R”, the system did not know if
the desired city was Rozo or Romeo. It automatically picked Romeo, which is a
larger city than Rozo, as the next waypoint.

A 2006 report from the National Institute of Standards and Technology (NIST)
[6] indicated that software errors are estimated to cost the US economy $59.5 bil-
lion annually (0.6 percent of the GDP); the cost has undoubtedly grown since then.
Over half the cost of fixing or responding to these bugs is passed on to software
users, while software developers and vendors absorb the rest.

Even when faults in software are discovered due to erroneous behavior or some
other manifestation of the fault(s)," finding and fixing them is an entirely different
matter. Fault localization, which focuses on the former, i.e. identifying the loca-
tions of faults, has historically been a manual task that has been recognized to
be time-consuming and tedious as well as prohibitively expensive [7], given the
size and complexity of large-scale software systems today. Furthermore, manual
fault localization relies heavily on the software developer’s experience, judgment,
and intuition to identify and prioritize code that is likely to be faulty. These limita-
tions have led to a surge of interest in developing techniques that can partially or
fully automate the localization of faults in software while reducing human input.
Though some techniques are similar and some very different (in terms of the type
of data consumed, the program components focused on, comparative effectiveness
and efficiency, etc.), they each try to attack the problem of fault localization from a
unique perspective, and typically offer both advantages and disadvantages relative
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to one another. With many techniques already in existence and others continually
being proposed, as well as with advances being made both from a theoretical and
practical perspective, it is important to catalog and overview current state-of-the-
art techniques in fault localization in order to offer a comprehensive resource for
those already in the area and those interested in making contributions to it.

In order to provide a complete survey covering most of the publications related
to software fault localization since the late 1970s, in this chapter, we created a pub-
lication repository that includes 587 papers published from 1977 to 2020. We also
searched for Masters’ and PhD theses closely related to software fault localization,
which are listed in Table 1.1.

Table 1.1 A list of recent PhD and Masters’ theses on software fault localization.

Author Title Degree  University Year

Ehud Y. Shapiro [8] Algorithmic Program  PhD Yale 1983
Debugging University

Hiralal Agrawal [9] Towards Automatic PhD Purdue 1991
Debugging of University
Computer Programs

Hsin Pan [10] Software debugging PhD Purdue 1993
with dynamic University

instrumentation and
test-based knowledge

W. Bond Gregory [11] Logic Programs for PhD Carleton 1994
Consistency-based University
Diagnosis
Benjamin Robert Liblit [12]  Cooperative Bug PhD The 2004
Isolation University of
California,
Berkeley
Bernhard Peischl [13] Automated Source- PhD Graz 2004
Level Debugging of University of
Synthesizeable VHDL Technology
Designs
Haifeng He [14] Automated Master  University of 2004
Debugging using Arizona
Path-based Weakest
Preconditions
Alex David Groce [15] Error Explanation PhD Carnegie 2005
and Fault Mellon
Localization with University

Distance Metrics

(Continued)
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Concurrency Bugs

Champaign

Table 1.1 (Continued)

Author Title Degree  University Year

Emmanuel Renieris [16] A Research PhD Brown 2005
Framework for University
Software-Fault
Localization Tools

Daniel K6b [17] Extended Modeling PhD Graz 2005
for Automatic Fault University of
Localization in Technology
Object-Oriented
Software

David Hovemeyer [18] Simple and Effective PhD University of 2005
Static Analysis to Find Maryland
Bugs

Peifeng Hu [19] Automated Fault PhD The 2006
Localization: University of
a Statistical Predicate Hong Kong
Analysis Approach

Xiangyu Zhang [20] Fault Localization via ~ PhD The 2006
Precise Dynamic University of
Slicing Arizona

Rafi Vayani [21] Improving Automatic ~ Master  Delft 2007
Software Fault University of
Localization Technology

Ramana Rao Kompella [22]  Fault Localization in PhD University of 2007
Backbone Networks California,

San Diego

Andreas Griesmayer [23] Debugging Software: PhD Graz 2007
from Verification to University of
Repair Technology

Tao Wang [24] Post-Mortem PhD Fudan 2007
Dynamic Analysis For University
Software Debugging

Sriraman Tallam [25] Fault Location and PhD The 2007
Avoidance in Long- University of
Running Arizona
Multithreaded
Applications

Opbhelia C. Chesley [26] CRISP-A fault Master  Rutgers, The 2007
localization Tool for State
Java Programs University of

New Jersey

Shan Lu [27] Understanding, PhD University of 2008
Detecting and Illinois at
Exposing Urbana-
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Table 1.1 (Continued)
Author Title Degree  University Year
Naveed Riaz [28] Automated Source- PhD Graz 2008
Level Debugging of University of
Synthesizable Verilog Technology
Designs
James Arthur Jones [29] Semi-Automatic Fault PhD Georgia 2008
Localization Institute of
Technology
Zhenyu Zhang [30] Software Debugging PhD The 2009
through Dynamic University of
Analysis of Program Hong Kong
Structures
Rui Abreu [31] Spectrum-based Fault PhD Delft 2009
Localization in University of
Embedded Software Technology
Dennis Jefferey [32] Dynamic State PhD University of 2009
Alteration California
Techniques for Riverside
Automatically
Locating Software
Errors
Xinming Wang [33] Automatic PhD The Hong 2010
Localization of Code Kong
Omission Faults University of
Science and
Technology
Fabrizio Pastore [34] Automatic Diagnosis PhD University of 2010
of Software Milan
Functional Faults by Bicocca
Means of Inferred
Behavioral Models
Mihai Nica [35] On the Use of PhD Graz 2010
Constraints in University of
Automated Program Technology
Debugging — From
Foundations to
Empirical Results
Zachary P. Fry [36] Fault Localization Master The 2011
Using Textual University of
Similarities Virginia
Hua Jie Lee [37] Software Debugging PhD The 2011
Using Program University of
Spectra Melbourne

(Continued)
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Table 1.1 (Continued)

Author Title Degree  University Year
Vidroha Debroy [38] Towards the PhD The 2011
Automation of University of
Program Debugging Texas at
Dallas
Alberto Gonzalez Sanchez ~ Cost Optimizations in ~ PhD Delft 2011
[39] Runtime Testing and University of
Diagnosis Technology
Jared David DeMott [40] Enhancing PhD Michigan 2012
Automated Fault State
Discovery and University
Analysis
Xin Zhang [41] Secure and Efficient PhD Carnegie 2012
Network Fault Mellon
Localization University
Xiaoyuan Xie [42] On the Analysis of PhD Swinburne 2012
Spectrum-based Fault University of
Localization Technology
Alexandre Perez [43] Dynamic Code Master  University of 2012
Coverage with Porto
Progressive Detail
Levels
Raul Santelices [44] Change-effects PhD Georgia 2012
Analysis for Effective Institute of
Testing and Technology
Validation of Evolving
Software
George. K. Baah [45] Statistical Causal PhD Georgia 2012
Analysis for Fault Institute of
Localization Technology
Swarup K. Sahoo [46] A Novel Invariants- PhD University of 2012
based Approach for Illinois at
Automated Software Urbana-
Fault Localization Champaign
Birgit Hofer [47] From Fault PhD Graz 2013
Localization of University of
Programs written in Technology
3rd level Language to
Spreadsheets
Aritra Bandyopadhyay [48]  Mitigating the Effect PhD Colorado 2013
of Coincidental State
Correctness in University

Spectrum-based Fault
Localization



1.1 Introduction

Table 1.1 (Continued)

Author Title Degree  University Year

Shounak Roychowdhury A Mixed Approach to  PhD The 2013

[49] Spectrum-based Fault University of
Localization Using Texas at
Information Theoretic Austin
Foundations

Shaimaa Ali [50] Localizing State- PhD The 2013
Dependent Faults University of
Using Associated Western
Sequence Mining Ontario

Christian Kuhnert [51] Data-driven Methods =~ PhD Karlsruhe 2013
for Fault Localization Institute of
in Process Technology Technology

Dawei Qi [52] Semantic Analyses to ~ PhD Tsinghua 2013
Detect and Localize University
Software Regression
Errors

William N. Sumner [53] Automated Failure PhD Purdue 2013
Explanation Through University
Execution
Comparison

Mark A. Hays [54] A Fault-based Model ~ PhD University of 2014
of Fault Localization Kentucky
Techniques

Sang Min Park [55] Effective Fault PhD Georgia 2014
Localization Institute of
Techniques for Technology
Concurrent Software

Gang Shu [56] Statistical Estimation =~ PhD Case Western 2014
of Software Reliability Reserve
and Failure-causing University
Effect

Lucia [57] Ranking-based PhD Singapore 2014
Approaches for Management
Localizing Faults University

Seok-Hyeon Moon [58] Effective Software Master Korea 2014
Fault Localization Advanced

using Dynamic
Program Behaviors

Institute of
Science and
Technology

(Continued)
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Table 1.1 (Continued)

Author Title Degree  University Year

Yepang Liu [59] Automated Analysis PhD The Hong 2014
of Energy Efficiency Kong
and Performance for University of
Mobile Applications Science and

Technology

Cuiting Chen [60] Automated Fault PhD Delft 2015
Localization for University of
Service-Oriented Technology
Software Systems

Matthias Rohr [61] Workload-sensitive PhD Kiel 2015
Timing Behavior University
Analysis for Fault
Localization in
Software Systems

Ozkan Bayraktar [62] Ela: an Automated PhD The Middle 2015
Statistical Fault East
Localization Technical
Technique University

Azim Tonzirul [63] Fault Discovery, PhD University of 2016
Localization, and California
Recovery in Riverside
Smartphone Apps

Laleh Fault Localization PhD The 2016

Gholamosseinghandehari based on University of

[64] Combinatorial Texas at
Testing Arlington

Ruizhi Gao [65] Advanced Software PhD The 2017
Fault Localization for University of
Programs with Texas at
Multiple Bugs Dallas

Shih-Feng Sun [66] Statistical Fault PhD Case Western 2017
Localization and Reserve
Causal Interactions University

Rongxin Wu [67] Automated PhD The Hong 2017
Techniques for Kong
Diagnosing Crashing University of
Bugs Science and

Technology

Arjun Roy [68] Simplifying dataleft PhD University of 2018
fault detection and California
localization San Diego
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and Container
Cloning for Replay
Debugging of
Microservices

Los Angeles

Table 1.1 (Continued)
Author Title Degree  University Year
Yun Guo [69] Towards PhD George 2018
Automatically Mason
Localizing and University
Repairing SQL Faults
Nasir Safdari [70] Learning to Rank Master  Rochester 2018
Relevant Files for Bug Institute of
Reports Using Technology
Domain knowledge,
Replication and
Extension of a
Learning-to-Rank
Approach
Dai Ting [71] A Hybrid Approachto  PhD North 2019
Cloud System Carolina
Performance Bug State
Detection, Diagnosis University
and Fix
George Thompson [72] Towards Automated Master  North 2020
Fault Localization for Carolina
Prolog A&T State
University
Xia Li [73] An Integrated PhD The 2020
Approach for University of
Automated Software Texas at
Debugging via Dallas
Machine Learning
and Big Code Mining
Muhammad Ali Gulzar Automated Testing PhD University of 2020
[74] and Debugging for Big California,
Data Analytics Los Angeles
Mihir Mathur [75] Leveraging Master  University of 2020
Distributed Tracing California,

9

All papers in our repository” are sorted by year, and the result is displayed in
Figure 1.1. As shown in the figure, the number of publications grew rapidly after
2001, indicating that more and more researchers began to devote themselves to the
area of software fault localization over the last two decades.
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Figure 1.1 Papers on software fault localization from 1977 to 2020.
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Figure 1.2 Publications on software fault localization in top venues from 2001 to 2020.

Also, as per our repository, Figure 1.2. gives the number of publications related
to software fault localization that have appeared in top quality and leading jour-
nals and conferences that focus on Software Engineering - IEEE Transactions
on Software Engineering, ACM Transactions on Software Engineering and
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Methodology, International Conference on Software Engineering, ACM Interna-
tional Symposium on Foundations of Software Engineering, and ACM Interna-
tional Conference on Automated Software Engineering - from 2001 to 2019.
This trend again supports the claim that software fault localization is not just
an important but also a popular research topic and has been discussed very heavily
in top quality software engineering journals and conferences over the last two
decades.

There is thus a rich collection of literature on various techniques that aim to
facilitate fault localization and make it more effective. Despite the fact that these
techniques share similar goals, they can be quite different from one another and
often stem from ideas that originate from several different disciplines. While we
aim to comprehensively cover as many fault localization techniques as possible,
no article, regardless of breadth or depth, can cover all of them. In this book,
our primary focus is on the techniques for locating Bohrbugs [76]. Those for diag-
nosing Mandelbugs [76] such as performance bugs, memory leaks, software bloats,
and security vulnerabilities are not included in the scope. Also, due to space lim-
itations, we group techniques into appropriate categories for collective discussion
with an emphasis on the most important features and leave other details of these
techniques to their respectively published papers. This is especially the case for
techniques targeting a specific application domain, such as fault localization for
concurrency bugs and spreadsheets. For these, we provide a review that helps
readers with general understanding.

The following terms appear repeatedly throughout this chapter, and thus
for convenience, we provide definitions for them here per the taxonomy
provided in [77]:

¢ A failure is when a service deviates from its correct behavior.
e An error is a condition in a system that may lead to a failure.
o A fault is the underlying cause of an error, also known as a bug.

In this book, we group fault localization techniques into appropriate categories
(including traditional, slicing-based, spectrum-based, statistics-based, machine
learning-based, data mining-based, information-retrieval-based, model-based,
spreadsheet-based, and emerging techniques) for collective discussion with an
emphasis on the most important features. We introduce the popular subject pro-
grams that have been used in different case studies and discuss how these programs
have evolved through the years. Different evaluation metrics to assess the effec-
tiveness of fault localization techniques are also described as well as a discus-
sion of fault localization tools and theoretical studies. Moreover, we explore
some critical aspects of software fault localization, including (i) fault
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localization for programs with multiple bugs, (ii) inputs, outputs, and impact of
test cases, (iii) coincidental correctness, (iv) faults introduced by missing code,
(v) combination of multiple fault localization techniques, (vi) ties within fault
localization rankings, and (vii) fault localization for concurrency bugs. The gen-
eral information of each chapter is introduced as follows.

This book begins by introducing traditional software fault localization techni-
ques in Chapter 2, including program logging, assertions, and breakpoints. Exam-
ples will also be provided to clearly explain these techniques.

Program slicing is a technique to abstract a program into a reduced form by
deleting irrelevant parts such that the resulting slice will still behave in the same
way as the original program with respect to certain specifications. Chapter 3 intro-
duces slicing-based fault localization techniques, which can be classified into three
major categories: static slicing, dynamic slicing, and execution slicing-based tech-
niques. Examples will be given to illustrate the differences among these categories.
Techniques based on other slicing such as dual slicing, thin slicing, and relevant
slicing are also included.

Program spectrum-based techniques are presented in Chapter 4. A program
spectrum details the execution information of a program from certain perspec-
tives, such as execution information for conditional branches or loop-free intra-
procedural paths. It can be used to track program behavior. A list of different kinds
of program spectra will be provided. Also discussed are issues and concerns related
to program spectrum-based techniques.

Software fault localization techniques based on well-defined statistical analyses
(e.g. parametric and nonparametric hypothesis testing, causal-inference analysis,
and cross tabulation analysis) are described in Chapter 5.

Machine learning is the study of computer algorithms that improve through
experience. These techniques are adaptive and robust and can produce models
based on data, with limited human interaction. Such properties have led to their
employment in many disciplines including bioinformatics, natural language pro-
cessing, cryptography, computer vision, etc. In the context of software fault local-
ization, the problem at hand can be identified as trying to learn or deduce the
location of a fault based on input data such as statement coverage and the execu-
tion result (success or failure) of each test case. Chapter 6 covers fault localization
techniques based on machine learning techniques.

Along the lines of machine learning, data mining also seeks to produce a model
using pertinent information extracted from data. Data mining can uncover hidden
patterns in samples of data that may not be discovered by manual analysis alone,
especially due to the sheer volume of information. Efficient data mining techni-
ques transcend such problems and do so in reasonable amounts of time with high



1.1 Introduction

degrees of accuracy. The software fault localization problem can be abstracted to a
data mining problem - for example, we wish to identify the pattern of statement
execution that leads to a failure. Data mining-based techniques are reviewed and
analyzed in Chapter 7.

Chapter 8 introduces information retrieval (IR)-based fault localization techni-
ques. Fault localization is the problem of identifying buggy source code files given
a textual description of a bug. This problem is important since many bugs are
reported through bug tracking systems like Bugzilla and Jira, and the number
of bug reports is often too many for developers to handle. This necessitates an auto-
mated tool that can help developers identify relevant files given a bug report. Due
to the textual nature of bug reports, IR techniques are often employed to solve this
problem. Many IR-based fault localization techniques have been proposed in the
literature.

Program models can be used for software fault localization. The first part of
Chapter 9 discusses techniques based on different program models such as
dependency-based models, abstraction-based models, and value-based models.
The second part emphasizes model checking-based techniques.

Spreadsheets are one of the most popular types of end-user software and have
been used in many sectors, especially in business. Chapter 10 discusses how tech-
niques using value-based or dependency-based models can effectively locate bugs
in cells with erroneous formulae and avoid incorrect computation.

Instead of being evaluated empirically, the effectiveness of software fault local-
ization techniques can also be analyzed from theoretical perspectives. Chapter 11
discusses theoretical studies on software fault localization.

Many of the software fault localization techniques assume that there is only one
bug in the program under study. This assumption may not be realistic in practice.
Mixed failed test cases associated with different causative bugs may reduce the
fault localization effectiveness. In Chapter 12, we present fault localization tech-
niques for programs with multiple bugs.

Finally, Chapter 13 presents emerging aspects of software fault localization,
including how to apply the scientific method to fault localization, how to locate
faults when the oracle is not available, how to automatically predict fault locali-
zation effectiveness, and how to integrate fault localization into automatic test
generation tools.

The remaining part of this Chapter is organized in the following manner: we begin
by describing traditional and intuitive fault localization techniques in Section 1.2,
moving on to more advanced and complex techniques in Section 1.3. In
Section 1.4, we list some of the popular subject programs that have been used

13
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in different case studies and discuss how these programs have evolved through the
years. Different evaluation metrics to assess the effectiveness of fault localization
techniques are described in Section 1.5, followed by a discussion of fault localiza-
tion tools in Section 1.6. Finally, critical aspects and conclusions are presented in
Section 1.7 and Section 1.8, respectively.

1.2 Traditional Fault Localization Techniques

This section describes traditional and intuitive fault localization techniques,
including program logging, assertions, breakpoints, and profiling.

1.2.1 Program Logging

Statements (such as print) used to produce program logging are commonly
inserted into the code in an ad-hoc fashion to monitor variable values and other
program state information [78]. When abnormal program behavior is detected,
developers examine the program log in terms of saved log files or printed run-time
information to diagnose the underlying cause of failure.

1.2.2 Assertions

Assertions are constraints added to a program that have to be true during the cor-
rect operation of a program. Developers specify these assertions in the program
code as conditional statements that terminate execution if they evaluate to false.
Thus, they can be used to detect erroneous program behavior at runtime. More
details of using assertions for program debugging can be found in [79, 80].

1.2.3 Breakpoints

Breakpoints are used to pause the program when execution reaches a specified
point and allow the user to examine the current state. After a breakpoint is trig-
gered, the user can modify the value of variables or continue the execution to
observe the progression of a bug. Data breakpoints can be configured to trigger
when the value changes for a specified expression, such as a combination of
variable values. Conditional breakpoints pause execution only upon the satisfac-
tion of a predicate specified by the user. Early studies (e.g. [81, 82]) use this
approach to help developers locate bugs while a program is executed under
the control of a symbolic debugger. The same approach is also adopted by more
advanced debugging tools such as GNU GDB [83] and Microsoft Visual Studio
Debugger [84].
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1.2.4 Profiling

Profiling is the runtime analysis of metrics such as execution speed and memory
usage, which is typically aimed at program optimization. However, it can also be
leveraged for debugging activities, such as the following:

¢ Detecting unexpected execution frequencies of different functions (e.g. [85]).
o Identifying memory leaks or code that performs unexpectedly poorly (e.g. [86]).
o Examining the side effects of lazy evaluation (e.g. [87]).

Tools that use profiling for program debugging include GNU’s gprof [88] and the
Eclipse plugin TPTP [89].

1.3 Advanced Fault Localization Techniques

With the massive size and scale of software systems today, traditional fault local-
ization techniques are not effective in isolating the root causes of failures. As a
result, many advanced fault localization techniques have surfaced recently using
the idea of causality [90, 91], which is related to philosophical theories with an
objective to characterize the relationship between events/causes (program bugs
in our case) and a phenomenon/effect (execution failures in our case). There
are different causality models [91] such as counterfactual-based, probabilistic-
or statistical-based, and causal calculus models. Among these, probabilistic causal-
ity models are the most widely used in fault localization to identify suspicious code
that is responsible for execution failures.

In this chapter, we classify fault localization techniques into nine categories,
including slicing-based, spectrum-based, statistics-based, machine learning-based,
data mining-based, IR-based, model-based, spreadsheet-based techniques, and
additional emerging techniques. Many studies that evaluate the effectiveness of
specific fault localization techniques have been reported [92-124]. However, none
of them offer a comprehensive discussion on all these techniques.

1.3.1 Slicing-Based Techniques

Program slicing is a technique to abstract a program into a reduced form by delet-
ing irrelevant parts such that the resulting slice will still behave the same as the
original program with respect to certain specifications. Hundreds of papers on this
topic have been published [125-127] since Weiser first proposed static slicing in
1979 [128].

One of the important applications of static slicing [129] is to reduce the search
domain while programmers locate bugs in their programs. This is based on the
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idea that if a test case fails due to an incorrect variable value at a statement, then
the defect should be found in the static slice associated with that variable-
statement pair, allowing us to confine our search to the slice rather than looking
at the entire program. Lyle and Weiser extend the above approach by constructing
a program dice (as the set difference of two groups of static slices) to further reduce
the search domain for possible locations of a fault [130]. Although static slice-
based techniques have been experimentally evaluated and confirmed to be useful
in fault localization [109], one problem is that handling pointer variables can make
data-flow analysis inefficient because large sets of data facts that are introduced by
dereferences of pointer variables need to be stored. Equivalence analysis, which
identifies equivalence relationships among the various memory locations accessed
by a procedure, is used to improve the efficiency of data-flow analyses in the pres-
ence of pointer variables [131]. Two equivalent memory locations share identical
sets of data facts in a procedure. As a result, data-flow analysis only needs to com-
pute information for a representative memory location, and data-flow for other
equivalent locations can be garnered from the representative location. Static sli-
cing is also applied for fault localization in binary executables [132], and type-
checkers [133].

A disadvantage of static slicing is that the slice for a given variable at a given
statement contains all the executable statements that could possibly affect the
value of this variable at the statement. As a result, it might generate a dice with
certain statements that should not be included. This is because we cannot predict
some run-time values via a static analysis. To deal with the imprecision of static
slicing, Zhang and Santelices [134] propose PRIOSLICE to refine the results
reported by static slicing.

A good approach to exclude such extra statements from a dice (as well as a
slice) is to use dynamic slicing [135, 136] instead of static slicing, as the former
can identify the statements that do affect a particular value observed at a partic-
ular location, rather than possibly affecting such a value as with the latter. Stud-
ies such as [121, 122, 132, 134, 137-159], which use the dynamic slicing concept
in program debugging, have been reported. In [156], Wotawa combines dynamic
slicing with model-based diagnosis to achieve more effective fault localization.
Using a given test suite against a program, dynamic slices for erroneous variables
discovered are collected. Hitting-sets are constructed, which contain at least one
statement from each dynamic slice. The probability that a statement is faulty is
calculated based on the number of hitting-sets that cover that statement [160].
Zhang et al. [157] propose the multiple-points dynamic slicing technique, which
intersects slices of three techniques: backward dynamic slice (BwS), forward
dynamic slice (FwS), and bidirectional dynamic slice (BiS). The BwS captures
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any executed statements that affect the output value of a faulty variable, while
the FwS is computed based on the minimal input difference between a failed
and a successful test case, isolating the parts of the input that trigger a failure.
The BiS flips the values of certain predicates in the execution of a failed test case
so that the program generates a correct output. Qian and Xu [152] propose a sce-
nario-oriented program slicing technique. A user-specified scenario is identified
as the extra slicing parameter, and all program parts related to a special compu-
tation are located under the given execution scenario. There are three key steps to
implementing the scenario-oriented slicing technique: scenario input, identifica-
tion of scenario relevant codes, and, finally, gathering of scenario-oriented slices.
Ocariza et al. [150] propose an automated technique based on dynamic backward
slicing of the web application to localize DOM-related JavaScript faults. The pro-
posed fault localization approach is implemented in a tool called AUTOFLOX.
Ishii and Kutsuna [143] propose an effective fault localization method for Simulink
model. They use the satisfiability modulo theories (SMT) solver to generate distinct
dynamic slicing result for each failed test case. Guo et al. [161] apply dynamic sli-
cing and delta debugging to localize faults in SQL predicates. First, in order to iden-
tify any suspicious clause, row-based dynamic slicing execute the query for each
row in the provided test data, and record the predicate and the Boolean result
for each clause. Second, delta debugging is employed to mutate the column values
of the failed rows and replace them with the corresponding values from the suc-
cessful rows. If the mutated row passes, then the clause containing this column is
faulty.

One limitation of dynamic slicing-based techniques is that they cannot capture
execution omission errors, which may cause the execution of certain critical
statements in a program to be omitted and thus result in failures [162]. Gyimothy
et al. [163] propose the use of relevant slicing to locate faulty statements respon-
sible for execution omission errors. Given a failed execution, the relevant slicing
first constructs a dynamic dependence graph in the same way that classic
dynamic slicing does. It then augments the dynamic dependence graph with
potential dependence edges, and a relevant slice is computed by taking the tran-
sitive closure of the incorrect output on the augmented dynamic dependence
graph. However, incorrect dependencies between program statements may be
included to produce oversized relevant slices. To address this problem, Zhang
etal. [162] introduce the concept of implicit dependencies, in which dependencies
can be obtained by predicate switching. A similar idea has been used by Weer-
atunge et al. [164] to identify root causes of omission errors in concurrent pro-
grams, in which dual slicing, a combination of dynamic slicing and trace
differencing, is used. Wang and Liu [165] propose a hierarchical multiple
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predicate switching technique (HMPS). It reduces the search scope of critical
predicates to highly suspicious functions identified by spectrum-based fault
localization (SBFL) techniques, and then assigns the functions into combina-
tions following the call dependency graph.

An alternative approach to static and dynamic slicing is the use of execution
slicing based on data-flow tests to locate program bugs [166] in which an execu-
tion slice with respect to a given test case contains the set of statements executed
by this test. The reason for choosing execution slicing over static slicing is that a
static slice focuses on finding statements that could possibly have an impact on
the variables of interest for any inputs, versus statements that are executed by a
specific input. This implies that a static slice does not make any use of the input
values that reveal the fault and violates a very important concept in debugging
that suggests programmers analyze the program behavior under the test case that
fails and not under a generic test case. Collecting dynamic slices may consume
excessive time and file space, even though different algorithms [167-170] have
been proposed to address these issues. Conversely, it is relatively easy to con-
struct the execution slice for a given test case if we collect code coverage data
from the execution of the test. Different execution slice-based debugging tools
have been developed and used in practice such as ySuds at Telcordia (formerly
Bellcore) [171, 172] and eXVantage at Avaya [173]. Agrawal et al. [166] apply the
execution slice to fault localization by examining the execution dice of one failed
and one successful test to locate program bugs. Jones et al. [174, 175] and Wong
et al. [176] extend that study by using multiple successful and failed tests based
on the following observations:

o The more successful tests that execute a piece of code, the less likely it is for the
code to contain a bug.

o The more failed tests with respect to a given bug that execute a piece of code, the
more likely that it contains this bug.

We use the following example to demonstrate the differences among static,
dynamic, and execution slicing. Use the code in column 2 of Table 1.2 as the ref-
erence. Assume it has one bug at s,. The static slice for the output variable, prod-
uct, contains all statements that could possibly affect the value of product, s, 55,
S4, S5, S7, Sg, S10, and sy3, as shown in the third column. The dynamic slicing for
product only contains the statements that do affect the value of product with
respect to a given test case, which includes sy, 5, ss, S7, and s;3 (as shown in
the fourth column) when a = 2. The execution slice with respect to a given test
case contains all statements executed by this test. Therefore, the execution slice
for a test case, a = 2, consists of s, S, S3, S4, Ss, Se, S7, S12, S13 as shown in the fifth
column of Table 1.2.
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One problem with the aforementioned slice-based techniques is that the bug
may not be in the dice. Even if a bug is in the dice, there may still be too much
code that needs to be examined. To overcome this problem, an inter-block data
dependency-based augmentation and a refining method is proposed in [178].
The former includes additional code in the search domain for inspection based
on its inter-block data dependency with the code currently being examined,
whereas the latter excludes less suspicious code from the search domain using
the execution slices of additional successful tests. Additionally, slices are problem-
atic because they are always lengthy and hard to understand. In [179], the notion
of using barriers is proposed to provide a filtering approach for smaller program
slices and better comprehensibility. Stridharan et al. [180] propose thin slicing
in order to find only producer statements that help compute and copy a value to
a particular variable. Statements that explain why producer statements affect
the value of a particular variable are excluded from a thin slice.

1.3.2 Program Spectrum-Based Techniques

Following the discussion in the beginning of Section 1.3, we would like to empha-
size that many spectrum-based techniques are inspired by the probabilistic- and
statistical-based causality models. With this understanding, we now explain the
details of these techniques.

A program spectrum details the execution information of a program from cer-
tain perspectives, such as execution information for conditional branches or loop-
free intra-procedural paths [181]. It can be used to track program behavior [182].
An early study by Collofello and Cousins [183] suggests that such spectra can be
used for software fault localization. When the execution fails, such information
can be used to identify suspicious code that is responsible for the failure. Code
coverage, or executable statement hit spectrum (ESHS), indicates which parts of
the program under testing have been covered during an execution. With this infor-
mation, it is possible to identify which components were involved in a failure, nar-
rowing the search for the faulty component that made the execution fail. Masri
[184] presents a comprehensive survey of state-of-the-art SBFL techniques pro-
posed from 2005 to February 2016, describing the most recent advances and
challenges.

1.3.2.1 Notation

p  aprogram

a, Number of failed test cases that cover a statement

a,; Number of failed test cases that do not cover a
statement
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a.s Number of successful test cases that cover a statement

a,s Number of successful test cases that do not cover a
statement

a. Total number of test cases that cover a statement

a, Total number of test cases that do not cover a statement

as Total number of successful test cases

as  Total number of failed test cases

ti The ith test case

1.3.2.2 Techniques

Early studies [145, 185-187] only use failed test cases for SBFL, though this
approach has subsequently been deemed ineffective [107, 117, 166]. Later studies
achieve better results using both the successful and failed test cases and emphasiz-
ing the contrast between them. Set union and set intersection are proposed in
[188]. The set union focuses on the source code that is executed by the failed test
but not by any of the successful tests. Such code is more suspicious than others.
The set intersection excludes the code that is executed by all the successful tests
but not by the failed test. Renieris and Reiss [188] propose another ESHS-based
technique, nearest neighbor, which contrasts a failed test with a successful test that
is most similar to the failed one in terms of the distance between them. If a bug is in
the difference set, it is located. For a bug that is not contained in the difference set,
the process continues by first constructing a program dependence graph (PDG)
and then including and checking adjacent unchecked nodes in the graph step
by step until all the nodes in the graph are examined. The idea of nearest neighbor
is similar to Lewis’ counterfactual reasoning [189], which claims that, for two
events A and B, A causes B (in world w) if and only if, in all possible worlds that
are maximally similar to w, A does not take place and B also does not happen. The
theory of counterfactual reasoning is also found in other studies such as [190-192].

Intuitively, the closer the execution pattern of a statement is to the failure pattern
of all test cases, the more likely the statement is to be faulty, and consequently the
more suspicious the statement seems. By the same token, the farther the execution
pattern of a statement is to the failure pattern, the less suspicious the statement
appears to be. Similarity coefficient-based measures can be used to quantify this
closeness, and the degree of closeness can be interpreted as the suspiciousness
of the statements.

A popular ESHS-based similarity coefficient-based technique is Tarantula [174],
which uses the coverage and execution result (success or failure) to compute the
suspiciousness of each statement as (aef / af) / (aef Jar + e/ as). A study on the
Siemens suite [107] shows that Tarantula inspects less code before the first faulty
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statement is identified, making it a more effective fault localization technique
when compared to others such as set union, set intersection, nearest neighbor,
and cause transition [193]. Based on the suspiciousness computed by Tarantula,
studies like [174, 175] use different colors (from red to yellow to green) to provide
a visual mapping of the participation of each program statement in the execution
of a test suite. The more failed test cases that execute a statement, the brighter (red-
der) the color assigned to the statement will be. In [103], Debroy et al. further
revise the Tarantula technique. Statements executed by the same number of failed
test cases are grouped together, and then groups are ranked in descending order by
the number of failed test cases. Using Tarantula, statements are ranked by suspi-
ciousness within each group.

For discussion purposes, let us use the code in Table 1.2 again. Assume that we
have two successful test cases (a = 0 and a = 1) and one failed test case (a = 2). The
suspiciousness value of each statement can be computed, for example, using the
Tarantula technique discussed above. The results are as shown in Table 1.3.

The third to fifth columns in Table 1.3 represent the statement coverage of the
three test cases. An entry with a “e” means the statement is covered by the corre-
sponding test case, while an empty entry means the statement is not. The values of
aerand a, for each statement are given in the sixth and seventh columns. Based on
the definition of Tarantula, the suspiciousness value of each statement is com-
puted and displayed in the eighth column. The ranking of each statement is given
in the rightmost column. As we can observe, the faulty statement s, has the highest
ranking.

In recent years, other techniques have also been proposed that perform at the
same level with, or even surpass, Tarantula in terms of their effectiveness at fault
localization. The Ochiai similarity coefficient-based technique [94] is generally
considered more effective than Tarantula, and its formula is as follows:

a
Suspiciousness(Ochiai) = 4

ar X (G + Qo)

There are two major differences between Ochiai and the nearest neighbor
model: (i) the nearest neighbor model utilizes a single failed test case, while Ochiai
uses multiple failed test cases and (ii) the nearest neighbor model only selects the
successful test case that most closely resembles the failed test case, while Ochiai
includes all successful test cases. Ochiai2 [113] is an extension of Ochiai, and
its formula is as follows:

Qef XApg

Suspiciousness(Ochiai2) =

(Ao +0es) X (Ans+anf) X (Gef +anf) X (Aep+ans)
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In [113], Naish et al. propose two techniques, O and O”. The technique O is
designed for programs with a single bug, while O is better applied to programs
with multiple bugs. Data from their experiments suggest that O and O” are more
effective than Tarantula, Ochiai, and Ochiai2 for single-bug programs. On the
other hand, Le et al. [194] present a different view by showing that Ochiai can
be more effective than O and O” for programs with single bugs.

Suspiciousness(O) = { —Lif ay > 0
a,s otherwise

Table 1.4 lists 31 similarity coefficient-based techniques, along with their alge-
braic forms, which have been used in different studies such as [195-197]. A few
additional techniques using similar approaches can be found in [198]. Tools like
Zoltar [199] and DEPUTO [200] are available to compute the suspiciousness with
respect to selected techniques. Empirical studies have also shown that techniques
proposed in [117, 197, 201-203] are, in general, more effective than Tarantula.

Comparisons among different SBFL techniques are frequently discussed in
recent studies [95, 113, 194, 197, 204, 205]. However, there is no technique claim-
ing that it can outperform all others under every scenario. In other words, an opti-
mum spectrum-based technique does not exist, which is supported by Yoo et al.’s
study [206].

A few additional examples of program SBFL techniques are listed below.

e Program Invariants Hit Spectrum (PIHS)-Based: This spectrum records the
coverage of program invariants [207], which are the program properties that
remain unchanged across program executions. PIHS-based techniques try to
find violations of program properties in failed program executions to locate bugs.
Potential invariants [208], also called likely invariants [209], are program proper-
ties that are observed to hold in some sets of successful executions but, unlike
invariants, may not necessarily hold for all possible executions. The major obsta-
cle in applying such techniques is how to automatically identify the necessary
program properties required for the fault localization. To address this problem,
existing PIHS-based techniques often take the invariant spectrum of successful
executions as the program properties. In study [210], Alipour and Groce propose
extended invariants by adding execution features such as the execution count of
blocks to the invariants. They claim that extended invariants are helpful in fault
localization. Shu et al. [211] propose FLSF technique based on Tarantula. They
use statement frequency, instead of coverage information, to evaluate the sus-
piciousness of each statement. FLSF first counts the statement frequency of each
program statement in each test case execution so as to construct a statement fre-
quency matrix. Second, each weighted element of the constructed matrix is nor-
malized to a value between 0 and 1. Finally, the suspiciousness of each statement
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is computed according to its frequency value. The proposed technique is evalu-
ated using Siemens suite and is reported to be better than Tarantula. Le et al.
[212] propose a fault localization technique that employs a learning-to-rank
strategy, using likely program invariants and suspiciousness scores as features,
to rank program methods based on their likelihood of being a root cause of a
failure.

e Predicate Count Spectrum (PRCS)-Based: PRCS records how predicates are
executed and can be used to track program behavior that is likely to be errone-
ous. These techniques are often labeled as statistical debugging techniques
because the PRCS information is analyzed using statistical methods. Fault local-
ization techniques in this category include Liblit05 [213], SOBER [214], etc. See
Section 1.3.3 for more details. Naish et al. [112] suggest that using PRCS could
achieve a better fault localization effectiveness than that using ESHS.

e Method Calls Sequence Hit Spectrum (MCSHS)-Based: Information regard-
ing the sequences of method calls covered during program execution is collected.
In one study, Dallmeier et al. [215] collect execution data from Java programs
and demonstrate fault localization through the identification and analysis of
method call sequences. Both incoming method calls (how an object is used)
and outgoing calls (how it is implemented) are considered. In another study,
Liu et al. [216] construct software behavior graphs from collected program exe-
cution data, including the calling and transition relationships between func-
tions. They define a framework to mine closed frequent graphs based on
behavior graphs and use them to train classifiers that help identify suspicious
functions.

o Time Spectrum-Based: A time spectrum [217-219] records the execution time
of every method in successful or failed executions. Observed behavior models
are created using time spectra collected from successful executions. Deviations
from these models in failed executions are identified and ranked as potential
causes of failures.

Other program spectra such as those in Table 1.5 [181] can also be applied to
identify suspicious code in a program.

1.3.2.3 Issues and Concerns

A variety of issues and concerns about SBFL has also been identified and studied in
depth. One problem is that most spectrum-based techniques do not calibrate the
contribution of failed and successful tests. In [220], all statements are divided into
suspicious and unsuspicious groups. The suspicious group contains statements
that have been executed by at least one failed test case, while the unsuspicious
group contains the remaining statements. Risk is only calculated for suspicious
statements, and unsuspicious statements are simply assigned the lowest value.
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Table 1.5 Additional program spectra relevant to fault localization.

Name Description

BHS  Branch Hit Spectrum Conditional branches that are executed

CPS  Complete Path Spectrum Complete path that is executed

PHS  Path Hit Spectrum Intra-procedural, loop-free path that is executed
PCS  Path Count Spectrum Number of times each intra-procedural, loop-free
path is executed
DHS Data-dependence Hit Definition-use pairs that are executed
Spectrum
DCS  Data-dependence Count Number of times each definition-use pair is
Spectrum executed
OPS  Output Spectrum Output that is produced

ETS  Execution Trace Spectrum  Execution trace that is produced

It is possible, however, that successful test cases may also contain bugs. In [117],
Wong et al. focus on the question of how each additional failed or successful test
case can aid in locating program bugs. They describe that with respect to a piece of
code, the contribution of the first failed test case that executes it in computing its
suspiciousness is larger than or equal to that of the second failed test case that exe-
cutes it, which in turn is larger than or equal to that of the third failed test case that
executes it, and so on. This principle is also applied to the contribution provided by
successful test cases. In addition, the total contribution from all the successful test
cases that execute a statement should be less than the total contribution from all
the failed tests that execute it. Recognizing that fault localization often proceeds by
comparing information associated with a failed test case to that with a successful
test case, Wong and Qi [178] and Guo et al. [221] attempt to answer the question of
which successful test case should be selected for comparison, in the interests of
more effective fault localization. Choosing the successful test case whose execution
sequence is most similar to that of a failed test case, according to a control flow-
based difference metric, can minimize the search domain of the fault.

For most spectrum-based techniques, if statements exhibit the same execution
pattern, there is a high likelihood that the suspiciousness score assigned to these
statements will be exactly the same. Statements with the same suspiciousness will
result in ties in the ranking. To break these ties, the information related to
statement execution frequency in addition to statement coverage can also be
utilized [222, 223]. In [120], Xu et al. evaluate different tie-breaking strategies,
including statement order-based strategy, confidence-based strategy, and data
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dependency-based strategy. Tie-breaking methods will be further discussed in
Section 1.7.6. Another problem is that almost all spectrum-based techniques have
assumed that a test oracle exists, which restricts their practical applicability. Thus,
Xie et al. [224, 225] propose a fault localization technique based on the integration
of metamorphic relations and slices, in which a program execution slice is replaced
by a metamorphic slice; an individual test case is replaced by a metamorphic test
group; and the success/failure result of a test case is replaced by the violation/non-
violation result of a metamorphic test group. Chen et al. [226] use metamorphic
relations and symbolic evaluation to integrate program proving, testing, and
debugging. See Chapter 11 of the Handbook. Tolksdorf et al. [227] apply metamor-
phic test cases to interactive debuggers. They transform both the debugged code
and the debugging actions in a way that the behavior of the original and the trans-
formed inputs can differ only in specific ways.

Zhao et al. [228, 229] posit that using only individual coverage information may
not reveal the execution paths. Therefore, they first use the program control-flow
graph to analyze the program execution and then map the distribution of failed
executions to different control flows. They use bug proneness to qualify how each
block contributes to the failure and bug free confidence to quantify the likelihood of
each block being bug-free by comparing the distributions of blocks on the same
failed execution path.

Guo et al. [230] discuss the instability of SBFL techniques. They provide a sto-
chastic technique to measure the instability quantity of SBFL. Then, the necessity
of evaluating SBFL instability is proven by experimental studies. Finally, the
authors propose several factors such as the test suite size and the risk evaluation
formula to measure the instability of SBFL. Keller et al. [231] find that SBFL has
limitation in locating bugs on large-size benchmarks. Studies in [232-235] report
that combining SBFL with mutation-based fault localization (MBFL) [236, 237]
can improve FL effectiveness for real faults compared to using SBFL or MBFL
alone. Li et al. [238] assign weights to the traditional binary executions in SBFL
using the probabilities of branch executions. Instead of using 0 or 1 to represent
the execution information of each statement in a test case, the value is replaced
by the ratio of the number of executions of a statement located in a branch of a
module to the total number of executions of the module.

Instrumentation overhead is another issue, which introduces a considerable cost
in the fault localization process, especially in a resource-constrained environment.
In order to mitigate this problem, Perez et al. [239] propose coined dynamic code
coverage by using coarser instrumentation to reduce such overhead. This tech-
nique starts by analyzing coverage traces for large components of the program
(e.g. package or class) and then progressively increases the instrumentation gran-
ularity for possible faulty components until the statement level is reached.
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1.3.3 Statistics-Based Techniques

A statistical debugging technique (Liblit05) that can isolate bugs in programs with
instrumented predicates at particular points is presented in [213]. For each predicate
P, Liblit05 first computes the probability that P being true implies failure, Failure(P),
and the probability that the execution of P implies failure, Context(P). Predicates that
have Failure(P) - Context(P) < 0 are discarded. The remaining predicates are prior-
itized based on their importance scores, which give an indication of the relationship
between predicates and program bugs. Predicates with a higher score should be
examined first. Chilimbi et al. [240] propose that replacing predicates with path
profiles may improve the effectiveness of Liblit05. Path profiles are collected during
execution and are aggregated across the execution of multiple test cases through
feedback reports. The importance score is calculated for each path and the top results
are selected and presented as potential root causes.

In [214], Liu et al. propose the SOBER technique to rank suspicious predicates.
A predicate P can be evaluated as true more than once in the execution of one test
case. They compute z(P) = n(t)/(n(t) + n(f)), the probability that P is evaluated
as true in each execution of a test case, where n(f) is the number of times P is eval-
uated as true and n(f) is the number of times P is evaluated as false. If the distri-
bution of z(P) in failed executions is significantly different from that in successful
executions, then Pis related to a fault. Hu et al. [241] use a similar heuristic to rank
all predicates. In addition, they apply nonparametric hypothesis testing to deter-
mine the degree of difference between the spectra of predicates for successful and
failed test cases. This new enhancement has been empirically evaluated to be effec-
tive [123, 242].

The study in [202] presents a cross tabulation (a.k.a. crosstab) analysis-based
technique to compute the suspiciousness of statements. A crosstab is constructed
for each statement with two vertical categories (covered/not covered) and two hor-
izontal categories (successful execution/failed execution). A hypothesis test is used
to provide a reference of dependency/independency between the execution results
and the coverage of each statement. The exact suspiciousness of each statement
depends on the degree of association between its coverage and the execution
results.

The primary difference among crosstab, SOBER, and Liblit05 is that crosstab can
be generally applied to rank suspicious program elements (i.e. statement, predi-
cate, and function/method), whereas the last two only rank suspicious predicates
for fault localization. For Liblit05 and SOBER, the corresponding statements of the
top k predicates are taken as the initial set to be examined for locating the bug. As
suggested by Jones and Harrold in [107], Liblit05 provides no way to quantify the
ranking for all statements. An ordering of the predicates is defined, but the
approach does not detail how to order statements related to any bug that lies
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outside a predicate. For SOBER, if the bug is not in the initial set of statements,
additional statements have to be included by performing a breadth-first search
on the corresponding PDG, which can potentially be time-consuming. However,
such a search is not required for crosstab, as all the statements of the program are
ranked based on their suspiciousness. Results reported in [202] suggest that cross-
tab is almost always more effective in locating bugs in the Siemens suite than
Liblit05 and SOBER. Similar to crosstab [202], Yang et al. [243] use conditional
probability to quantify the dependence between program spectra and execution
results, and compute the suspiciousness score accordingly. Henderson and Pod-
gurski [244] randomly sample suspicious subgraphs of dynamic control flow
graphs of successful and failed executions. Metrics used in coverage-based SBFL
are adapted to select the most suspicious subgraphs.

In program execution, short-circuit evaluation may occur frequently, which
means, for a predicate with more than one condition, if the first condition suf-
fices to determine the results of the predicate, the following conditions will not
be evaluated (executed). Zhang et al. [245, 246] identify the short-circuit evalua-
tions of an individual predicate and produce one set of evaluation sequences for
each predicate. Using such information, their proposed Debugging through Eval-
uation Sequences (DES) approach is compared to existing predicated-based tech-
niques such as SOBER and Liblit05. You et al. [247] propose a statistical
approach employing the behavior of two sequentially connected predicates in
the execution. They construct a weighted execution graph for each execution
of a test case with predicates as vertices and the transition of two sequential pre-
dicates as edges. For each edge, a suspiciousness value is calculated to quantify its
fault-relevant likelihood. Baah et al. [248] apply causal-inference techniques to
the problem of fault localization. A linear model is built on program control-flow
graphs to estimate the causal effect of covering a given statement on the occur-
rence of failures. This model is able to reduce confounding bias and thereby help
generate better fault localization rankings. In [249], they further enhance the lin-
ear model toward better fault localization effectiveness by including information
on data-flow dependence. In [250], Modi et al. explore the usage of execution
phase information such as cache miss rates, CPU, and Memory usages in statis-
tical program debugging. They suggest coupling execution phases with predicates
results in higher bug localization accuracy as opposed to when phase informa-
tion is not used. Wang et al. [251] propose a variable type-based predicate des-
ignation (VTPD) approach to improve the ability of fault-relevant predicate
identification and mitigate the confounding effect. The approach begins with
designing two kinds of predicates: the original type for branch statements and
indeed type for assignments and return statements. The indeed type is further
broken into several variable types based on the programming language, e.g. there
are numeric, Boolean, character, and reference types in Java. Then, the authors
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conduct a dependency analysis technique using the casual graph model to
examine the potential confounding effect of control and data dependences.
Finally, based on the analysis result, the authors build a linear regression model
to estimate the suspiciousness of predicates by calculating the contribution to the
failure result, and the control and data dependencies. Sun and Podgurski [205]
analyze several coverage-based statistical fault localization metrics to compare
their efficiency. They first identify the key elements for these metrics. Their
results suggest relative recall and symmetric Klosgen are the most effective met-
rics. In addition, for multiple-fault programs, symmetric Klosgen, relative
Ochiai, relative F1, and enhanced Tarantula all performed similarly well.

Feyzi and Parsa [252] proposed to incorporate fault-proneness analysis into sta-
tistical fault localization in order to address the fact that statistical fault localiza-
tion techniques are biased by data collection from distinct executions of a program
under analysis. Their evaluation shows that such combination is beneficial to fault
localization.

1.3.4 Program State-Based Techniques

A program state consists of variables and their values at a particular point during
program execution, which can be a good indicator for locating program bugs. One
way to use program states in software fault localization is by relative debugging
[253], in which faults in the development version can be located via a runtime
comparison of the internal states to a “reference” version of the program. Another
approach is to modify the values of some variables to determine which one causes
erroneous program execution. Zeller [192] and Zeller and Hildebrandt [254] pro-
pose a technique, delta debugging, by contrasting program states between execu-
tions of a successful test and a failed test via their memory graphs described in
[255]. Variables are tested for suspiciousness by replacing their values from a suc-
cessful test with their corresponding values from the same point in a failed test,
and repeating the program execution. Unless the identical failure is observed,
the variable is no longer considered suspicious. Note that the idea of simplifying
failure-inducing inputs discussed in [192, 254] is orthogonal to other techniques,
as it significantly reduces the original execution length. The delta tool [256] has
been widely used in industry for automated debugging. In [193], Cleve and Zeller
extend delta debugging to the cause transition technique to identify the locations
and times where the cause of a failure changes from one variable to another. An
algorithm named cts is proposed to quickly locate cause transitions in a program
execution. Similar studies [257-259] based on combinatorial testing are reported,
which separate input parameters into faulty-possible and healthy-possible and iden-
tify minimal failure-inducing combinations of parameters.
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However, the cause transition technique is a relatively high-cost approach; there
may exist thousands of states in a program execution, and delta debugging at each
matching point requires additional test executions to narrow down the causes.
Another problem is that the identified locations may not be where the bugs reside.
Gupta et al. [260] introduce the concept of a failure-inducing chop as an extension
to the cause transition technique to overcome this issue. First, delta debugging is
used to identify input and output variables that are causes of failure. Dynamic
slices are then constructed for these variables. The code at the intersection of
the forward slicing of the input variables and the backward slicing of the output
variables is considered suspicious.

Sumner et al. further improve the robustness, precision, and efficiency of delta
debugging by combining it with more precise execution alignment techniques
[261-263]. However, there are still three limitations to delta debugging: it fails
to handle confounding of partial state replacement, it cannot locate execution
omission errors, and it suffers from poor efficiency. To address these limitations,
Sumner and Zhang [264] propose a cause inference model, comparative causality,
to provide a systematic technique explaining the difference between a failed exe-
cution and a successful execution. Hashimoto et al. [265] propose a rule-based
approach to minimize the set of changes to facilitate delta debugging. It uses tree
differencing on ASTs to decompose changes into independent components both
syntactically and semantically so that invalid subsets that do not result in testable
programs can be avoided.

Predicate switching [266], proposed by Zhang et al., is another program
state-based fault localization technique where program states are changed to force-
fully alter the executed branches in a failed execution. A predicate that, if switched,
can make the program execute successfully is labeled as a critical predicate.
The technique starts by finding the first erroneous value in variables. Different
searching strategies, such as last-executed-first-switched (LEFS) ordering and
prioritization-based (PRIOR) ordering, can help determine the next candidates
for critical predicates. Wang and Roychoudhury [267] present a similar technique
that analyzes the execution path of a failed test and alters the outcome of branches
in that path to produce a successful execution. The branch statements with out-
comes that have been changed are recorded as bugs. A deficiency of predicate
switching is that the alternation of program states is never guided by program
dependence analysis, even though faults are intrinsically propagated through
the chain of program dependences. The study in [268] extends the predicate
switching technique and reduces the search space of program states by selecting
a subset of trace points in a failed execution based on dependence analysis. Li et al.
[269] propose minimum debugging frontier set (MDFS) to reduce the state explo-
ration cost. Given an observed and reproducible failure, its execution trace is ana-
lyzed and successively narrowed by cutting the dynamic dependence graph into
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two parts from the corresponding trace points. Based on the result of sparse sym-
bolic exploration, one part is removed from further exploration. This process con-
tinues until the fault is reached. The set of statement instances in the chosen cut is
called a MDFS.

Jeffrey et al. [270] present a value profile-based technique for fault localization to
assist developers in software debugging. The approach involves computing inter-
esting value mapping pairs (IVMPs) that show how values used in particular pro-
gram statements can be altered so that failed test cases will produce the correct
output instead. Alternate sets of values are selected from profiling information
taken from the executions of all test cases in an available test suite. Different alter-
nate value sets are used to perform value replacements in each statement instance
for every failed test case. Using these IVMPs, each statement can then be ranked
according to the number of failed executions in which at least one IVMP is iden-
tified for that statement. In [271], Zhang et al. claim that a bug within a statement
may propagate a series of infected program states before it manifests the failure.
Also, even if every failed execution executes a particular statement, this statement
is not necessarily the root cause of the failure. Thus, they use edge profiles to rep-
resent program executions and assess the suspiciousness of the infected program
states propagated through each edge. By associating basic blocks with edges, a sus-
piciousness ranking is generated to locate program bugs.

1.3.5 Machine Learning-Based Techniques

Machine learning is the study of computer algorithms that improve through expe-
rience. Machine learning techniques are adaptive and robust and can produce
models based on data, with limited human interaction. This has led to their
employment in many disciplines such as bioinformatics, natural language proces-
sing, cryptography, computer vision, etc. In the context of fault localization, the
problem at hand can be identified as trying to learn or deduce the location of a
fault based on input data such as statement coverage and the execution result (suc-
cess or failure) of each test case (e.g. [272-276]).

Wong and Qi [277] propose a fault localization technique based on a back-
propagation (BP) neural network, one of the most popular neural network models
in practice [278]. A BP neural network has a simple structure, which makes it easy
to implement using computer programs. Also, BP neural networks have the ability
to approximate complicated nonlinear functions [279]. The coverage data of each
test case and the corresponding execution result are collected, and they are used
together to train a BP neural network so that the network can learn the relation-
ship between them. Then, the coverage of a suite of virtual test cases that each cov-
ers only one statement in the program is input to the trained BP network, and the
outputs can be regarded as the likelihood of each statement containing the bug.
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Ascari et al. [98] extend the BP-based technique [277] to Object-Oriented pro-
grams. As BP neural networks are known to suffer from issues such as paralysis
and local minima, Wong et al. [201] propose another approach based on radial
basis function (RBF) networks, which are less susceptible to these problems
and have a faster learning rate [280, 281]. The RBF network is trained using an
approach similar to the BP network. Once the training is completed, the output
with respect to the coverage of each virtual test case is considered to be the suspi-
ciousness of the corresponding statement. There are three novelties of this
approach: (i) a method for representing test cases, coverage information, and exe-
cution results within a modified RBF neural network formalism, (ii) an innovative
algorithm to simultaneously estimate the number of hidden neurons and their
receptive field centers, and (iii) a weighted bit-comparison-based distance (instead
of the Euclidean distance) to measure the distance between the coverage of two
test cases.

In [282], Briand et al. use the C4.5 decision tree algorithm to construct rules that
classify test cases into various partitions such that failed test cases in the same par-
tition most likely fail due to the same causative fault. The underlying premise is
that distinct failure conditions for test cases can be identified depending on the
inputs and outputs of the test case (category partitioning). Each path in the deci-
sion tree represents a rule modeling distinct failure conditions, possibly originat-
ing from different faults, and leads to a distinct failure probability prediction. The
statement coverage of both the failed and successful test cases in each partition is
used to rank the statements using a heuristic similar to Tarantula [107] to form a
ranking. These individual rankings are then consolidated to form a final statement
ranking that can be examined to locate the faults. Jonsson et al. [283] build a super-
vised linear Bayesian model based on the text information extracted from histor-
ical bug reports to predict where bugs are located in a component.

Mariani et al. [284] present LOUD for localizing faults in cloud systems. It first
uses machine learning to detect anomalies in KPIs and reveal causal relationships
among them. Later, it employs graph centrality algorithms to localize the faulty
resources responsible for generating and propagating anomalies. Kim et al.
[285] propose PRINCE that uses genetic programming to train a statement suspi-
ciousness ranking model using information extracted from program spectrums of
both original and mutated programs, program dependency, and program struc-
tural complexity. Zhang et al. [286] propose PRFL, which combines SBFL with
the PageRank algorithm. Given the original program spectrum information, PRFL
uses PageRank to recompute the spectrum information by considering the contri-
butions of different tests. Then, SBFL techniques can be applied on the recom-
puted spectrum information. The combination of fault localization and defect
prediction techniques can further improve the accuracy of both processes [287].
Sohn and Yoo [288] extend SBFL with code and change metrics such as size,
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age, and code churn that are used in defect prediction. Using suspiciousness values
from existing SBFL formulas and the source code metrics as features, Genetic Pro-
gramming and linear rank Support Vector Machines are applied to learn these fea-
tures for fault localization. Li et al. [289] propose DeepFL, which uses TensorFlow
to learn the spectrum-, mutation-, complexity-, and textual-based features for fault
localization.

1.3.6 Data Mining-Based Techniques

Along the lines of machine learning, data mining also seeks to produce a model
using pertinent information extracted from data. Data mining can uncover hidden
patterns in samples of data that may not be discovered by manual analysis alone,
especially due to the sheer volume of information. Efficient data mining techni-
ques transcend such problems and do so in reasonable amounts of time with high
degrees of accuracy [290, 291]. The software fault localization problem can be
abstracted to a data mining problem - for example, we wish to identify the pattern
of statement execution that leads to a failure. In addition, although the complete
execution trace of a program is a valuable resource for fault localization, the huge
volume of data makes it unwieldy for usage in practice. Therefore, some studies
have creatively applied data mining techniques to execution traces [292].

Nessa et al. [293] generate statement subsequences of length N, referred to as
N-grams, from the trace data. The failed execution traces are then examined to find
the N-grams with a rate of occurrence that is higher than a certain threshold.
A statistical analysis is conducted to determine the conditional probability that
a certain N-gram appears in a given failed execution trace - this probability is
known as the confidence for that N-gram. N-grams are sorted in descending order
of confidence and the corresponding statements in the program are displayed
based on their first appearance in the list. Case studies on the Siemens suite as well
as the space and grep programs have shown that this technique is more effective at
locating faults than Tarantula.

Cellier et al. [294, 295] discuss a combination of association rules and Formal
Concept Analysis to assist in fault localization. The proposed technique tries to
identify rules regarding the association between statement coverage and corre-
sponding execution failures. The frequency of each rule is measured.
A threshold is decided upon to indicate the minimum number of failed executions
that should be covered by a selected rule. A large number of rules so generated are
partially ranked using a rule lattice. The ranking is then examined to locate
the fault.

In [296], the authors propose a technique taking advantage of the recent prog-
ress in multi-relational data mining for fault localization. More specifically, this
technique is based on Markov logic, combining first-order logic and Markov
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random fields with weighted satisfiability testing for efficient inference and a voted
perceptron algorithm for criminative learning. When applied to fault localization,
Markov logic combines different information sources such as statement coverage,
static program structure information, and prior bug knowledge into a solution to
improve the effectiveness of fault localization. Their technique is empirically
shown to be more effective than Tarantula on some programs of the Siemens suite.

Denmat et al. [297] propose a technique that reinterprets Tarantula as a data-
mining problem. In this technique, association rules that indicate the relationship
between a single statement and a program failure are mined based on the coverage
information and execution results of a test suite. The relevance values of these
rules are evaluated based on two metrics, conf and lift, which are commonly used
by classical data mining problems. Such values can be interpreted as the suspi-
ciousness of a statement that may contain bugs.

Bian et al. [298] present EAntMiner, which applies a divide-and-conquer
approach to exclude irrelevant statements that are irrelevant to certain critical
operations and transform representations of the same logic into a canonical form.
Later a k-nearest neighbors (kNN)-based method is developed to identify bugs that
are difficult to be detected due to the interferences of return statements that are
form identical but semantics different.

Hanam et al. [299] propose BugAID, a data mining technique for discovering
common unknown bug patterns. BugAID uses unsupervised machine learning
to identify language construct-based changes distilled from AST differencing of
bug fixes in the code.

1.3.7 Model-Based Techniques

With respect to each model-based technique, a critical concern is the model’s
expressive capability, which has a significant impact on the effectiveness of that
technique.

While using model-based diagnosis [300], it is assumed that a correct model of
each program being diagnosed is available. That is, these models can be served as
the oracles of the corresponding programs. Differences between the behavior of a
model and the actual observed behavior of the program are used to help find bugs
in the program [301, 302]. On the other hand, for model-based software fault local-
ization [155, 303-315], models are generated directly from the actual programs,
which may contain bugs. Differences between the observed program executions
and the expected results (provided by programmers or testers) are used to identify
model elements that are responsible for such observed misbehavior. As demon-
strated by the Java diagnosis experiments (JADE) in [316, 317], model-based
software fault localization can be viewed as an application of model-based diagno-
sis [318].
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Dependency-based models are derived from dependencies between statements
in a program, by means of either static or dynamic analysis. Mateis et al. [308]
present a functional dependency model for Java programs that can handle a subset
of features for the Java language, such as classes, methods, conditionals,
assignments, and while-loops. In their model, the structure of a program is
described with dependency-based models, while logic-based languages, such as
first-order logic, are applied to model the behavior of the target program. This
dependency-based model is then extended to handle unstructured control flows
in Java programs [319, 320], such as exceptions, recursive method calls, and return
and jump statements. The notion of a dependence graph has also been extended to
model behavior of a program over a test suite. Baah et al. [304] use a probabilistic
PDG to model the internal behavior of a program, facilitating probabilistic analysis
and reasoning about uncertain program behavior, especially those that are likely
associated with faults.

Xu et al. [321] propose to do fault localization based on a single failed execution.
They consider debugging as a probabilistic inference problem where the likelihood
of each executed statement/variable being correct/faulty is represented by a ran-
dom variable. Human knowledge, human-like reasoning rules, and program
semantics are modeled as probabilistic constraints, which can be solved to identify
the most likely faulty statements. Yu et al. propose to reason about observed pro-
gram failures using a Bayesian Network based on probabilistic PDG s to pinpoint
suspicious code entities [322, 323].

Wotawa et al. [313] use first-order logic to construct dependency-based models
based on source code analysis of target programs to represent program structures
and behavior. Test cases with expected outputs are also transformed into observa-
tions in terms of first-order logic. If the execution of a target program on a test case
fails, conflicts between the test case and the models (which can be shown as equiv-
alent to either static or dynamic slices [155]) are used to identify suspicious state-
ments responsible for the failure. For each statement, a default assumption is made
to suggest whether the statement is correct or incorrect. These assumptions are to
be revised during fault localization until the failure can be explained. The limita-
tion is that their study only focuses on loop-free programs. To fix this problem,
Mayer and Stumptner [310] propose an abstraction-based model in which abstract
interpretation [324, 325] is applied to handle loops, recursive procedures, and heap
data structures. Additionally, abstract interpretation is used to improve the effec-
tiveness of slice-based and other model-based fault localization techniques [326].

In addition to dependency-based and abstraction-based models, value-based
models [327, 328] that represent data-flow information in programs are also
applied to locate components that contain bugs. However, value-based models
are more computationally intensive than dependency-based and are only practical
for small programs [302].
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We now discuss model checking-based fault localization techniques that rely on
the use of model checkers to locate bugs [190, 329-336]. If a model does not satisfy
the corresponding program specifications (implying that the model contains at
least one bug), a model checker can be used to provide counter-examples showing
how the specifications will be violated. A counter-example does not directly specify
which parts of a model are associated with a given bug; however, it can be viewed
as a failed test case to help identify the causality of the bug [15].

Ball et al. [329] propose to use a model checker to explore all program paths
except that of the counter-example. Successful execution paths (those that do
not cause a failure) are recorded. An algorithm is used to identify the transitions
that appear in the execution path of the counter-example but not in any successful
execution paths. Program components related to these transitions are those that
are likely to contain the causes of bugs. This technique suffers from two weak-
nesses. First, as suggested by Groce and Visser [333], generating all successful exe-
cution paths can be very expensive. Second, only one counter-example is used to
locate bugs, even though the same bug may be triggered by multiple counter-
examples. If this occurs, using only one example can introduce possible bias. To
overcome these problems, for a given counter-example, Groce and Visser use a
technique to generate additional execution paths such that they are close to the
path of the counter-example but different in a small number of actions.
A metric [15, 190] based on the theory of causality and counterfactual reasoning
[90, 189] is proposed to measure the distance between two execution paths.
A tool, explain [334], is implemented to support their technique. Additional exe-
cution paths so generated may or may not cause a failure. Model components in
the failed paths but not in the successful paths are possible bug locations. Chaki
et al. further extend Groce’s technique by combining it with predicate abstraction
[330]. However, these techniques [15, 190, 329, 330, 333, 334] all require at least
one successful execution.

Griesmayer et al. [331, 332] argue that a successful execution path can be very
different from the path of the counter-example and cannot be easily identified
using the above techniques. Instead of searching for successful execution paths
with small changes from that of the original counter-example, they make minimal
changes to the program model so that the counter-example will not fail in the
revised model. Assuming there is only one bug in one model component, Gries-
mayer et al. propose a technique with two steps: (i) revising the program specifi-
cation in such a way that if any one component in the original model is changed,
then the original specification cannot be satisfied and (ii) creating variants of the
original model such that each variant has exactly one component replaced by a
different component with an alternative behavior. For each model variant, if a
model checker can find a counter-example violating the revised specification, then
the replaced component is potentially responsible for the failure. Since more than
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one component may be responsible for the failure, programmers have to manually
inspect these components to identify the one containing the bug. Experiments in
[331] use the model Checker CBMC, whereas extended studies using an additional
model checker SATABS are reported in [332].

Based on a similar idea described in [331, 332], Konighofer and Bloem [335] use
symbolic execution to locate bugs for imperative programs. An important point
stated by Griesmayer [332] is that the extensive use of a model checker makes their
techniques less efficient (in terms of time) than those in [190, 329, 330, 333, 334];
however, fault localization using model checkers can be used to refine results from
less precise techniques.

Last but not least, the idea of modifying a model so that test cases that fail on the
original model can be executed successfully on the modified model [331, 332, 335]
is also used in other studies for automatic bug fixing [337-340].

Additional model-based fault localization techniques also exist. They can be
applied to functional programs [341], hardware description languages like VHDL
[342, 343], and spreadsheets [47, 344]. Studies such as [345, 346] make use of con-
straint solving, in which programs are automatically compiled into a set of con-
straints. Shchekotykhin et al. [312] identify the preferred system diagnosis by
determining a subset of minimal conflicts. Then, a set of minimal hitting sets
for this subset of conflicts can be derived to find the true causes of unexpected
behavior. In [347], an expert-system approach called FLABot was proposed to
assist developers in fault-localization tasks by reasoning about faults using soft-
ware architecture models. Chittimalli and Shah [348] propose an approach that
applies the fault localization technique to BPMN models. In the approach, the test
scripts are generated per the BPMN model, and then executed by the test automa-
tion tool to produce an execution traceability matrix. The process model of test
scripts now acts as source entities in the fault localization techniques, namely,
Tarantula and statistical bug isolation (SBI). Finally, the analysis of the test scripts
can lead the testing team to conclude root for the failure. In [305], DeMillo et al.
propose a model for analyzing software failures and faults for debugging purposes.
Failure modes and failure types are defined to identify the existence of program
failures and to analyze the nature of program failures, respectively. Failure modes
are used to answer the question “How do we know the execution of a program
fails?” and failure types are used to answer the question “What is the failure?”
When abnormal behavior is observed during program execution, the failure is clas-
sified by its corresponding failure mode. Referring to some pre-established rela-
tionships between failure modes and failure types, certain failure types can be
identified as possible causes for the failure. Heuristics based on dynamic instru-
mentation (such as dynamic slice) and testing information are then used to reduce
the search domain for locating the fault by predicting possible faulty statements.
A significant drawback of using this model is that it is extremely difficult, if not
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impossible, to obtain an exhaustive list of failure modes because different pro-
grams can have very different abnormal behavior and symptoms when they fail.
As a result, we do not have a complete relationship between all possible failure
modes and failure types, and we might not be able to identify possible failure types
responsible for the failure being analyzed. Lehmann and Pradel [349] propose
DBDB to test real-life debuggers. It builds a finite-state model to capture common
features of debuggers and compares the behavior of two debuggers with generated
sequences of debugging actions. The diverging behavior and other noteworthy dif-
ferences indicate a potential bug in the debugger. Wang et al. [350] apply topic
model to learn and rank bug patterns for bugs located in complex program loops.
Troya et al. [351] use model transformations (MTs) and assertions for fault local-
ization. Given a set of MTs (mechanisms that manipulate and transform models), a
set of assertions and source models, the violated assertions will be identified.
Together with the MT coverage information, the transformation rules that deal
with the construction of part of the target model will be ranked according to their
suspiciousness of containing a bug.

1.3.8 Additional Techniques

In addition to those discussed above, there are other techniques for software fault
localization. Many of them focus on specific program languages or testing scenar-
ios. Listed below are a few examples.

Development of software systems, while enhancing functionality, will inevitably
lead to the introduction of new bugs, which may not be detected immediately.
Tracing the behavior changes to code changes can be highly time-consuming.
Bohnet et al. [352] propose a technique to identify recently introduced changes.
Dynamic, static, and code change information is combined to reduce the large
number of changes that may have an impact on faulty executions of the system.
In this way, root cause changes can be semiautomatically located.

In spite of using garbage collection, Java programs may still suffer from memory
leaks due to unwanted references. Chen and Chen [353] develop an aspect-based
tool, FindLeak, utilizing an aspect to gather memory consumption statistics and
object references created during a program execution. Collected information is
then analyzed to help detect memory leaks.

An implicit social network model is presented in [354] to predict possible loca-
tions of faults using fault locations cited by similar historical bug reports retrieved
from bug report managing systems (BRMS).

In [355], de Souza and Chaim propose a technique using integration coverage
data to locate bugs. By ranking the most suspicious pairs of method invocations,
roadmaps, which are sorted lists of methods to be investigated, are created.
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Gong et al. [356] propose an interactive fault localization technique, TALK,
which incorporates programmers’ feedback into SBFL techniques. Each time a
programmer inspects a suspicious program element in the ranking generated by
a fault localization technique, they can judge the correctness of the element
and provide this information as feedback to reorder the ranking of elements that
are not yet inspected. The authors demonstrate that using programmers’ feedback
can help increase the effectiveness of existing fault localization techniques. Lin
et al. [357] propose a feedback-based fault localization technique. Given a faulty
program, the execution trace is first recorded and later developers will provide
light-weight feedback on trace steps. Based on the feedbacks, suspicious steps
on the trace are identified. In addition, the proposed method is able to learn
and approximate bug-free paths to reduce the volume of feedbacks for the debug-
ging process. Li et al. [358] propose another interactive, feedback-based fault local-
ization technique. They ask developers contextualized questions in terms of
queries regarding the inputs and outputs related to concrete instances of suspi-
cious method invocations.

To better understand a program’s behavior, software developers must translate
their questions into code-related queries, speculating about the causes of faults.
Whyline [359] is a debugging tool that avoids such speculation by enabling devel-
opers to select from a set of “why did” and “why didn’t” questions derived from
source code. Using a combination of static and dynamic slicing, and precise call
graphs, the tool can find possible explanations of failures.

Cheng et al. [360] propose a software fault localization technique that mines bug
signatures within a program. A bug signature is a set of program elements that are
executed by most failed tests but not by successful tests in general. Bug signatures
are ranked in descending order by a discriminative significance score indicating
how likely it is to be related to the bug. This ranking is used to help identify
the location of the bug.

Maruyama et al. [361] indicate that the culprit of an overwritten variable is
always the last write-access to the memory location where the bug first appeared.
Removing such bugs begins with finding the last write, followed by moving the
control point of execution back to the time when the last write was executed. Gen-
erally, the statement that makes the last write will be faulty.

Liu et al. [362, 363] propose SimFL, a fault localization approach for Simulink
models by combining statistical debugging and dynamic model slicing. For Simu-
link models, engineers not only identify whether a test case passes or fails but also
routinely and explicitly determine which specific outputs are correct and which
ones are incorrect for each given test case. Relying on this observation, they use
a dynamic slicing technique in conjunction with statistical debugging to generate
one spectrum per output and each test case. Hence, a set of spectra that is signif-
icantly larger than the size of the test suite is obtained. The authors then use this
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set of spectra to rank model blocks using statistical ranking formulas (Tarantula,
Ochiai, and D*).

Wang et al. [364] investigate the factors that will affect the effectiveness of
IR-based fault localization on four open-source programs. They found that the
quality of bug reports determines the result of IR-based fault localization. Specif-
ically, quality reports that contain program entity names tend to result in good
ranked list of suspiciousness. In addition, the authors report that in practice the
ranked lists generated by the IR-based fault localization techniques do not always
help users debug; they only help when the techniques can generate perfect lists for
bugs without rich, identifiable information in the reports. Moreover, if the gener-
ated list is not good enough, it can even harm developers’ performance by leading
them to focus on the wrong files.

Recently, some studies [365-374] have applied IR techniques to software fault
localization. These studies use an initial bug report to rank the source code files
in descending order based on their relevance to the bug report. The developers
can then examine the ranking and identify the files that contain bugs. Unlike SBFL
techniques, IR-based techniques do not require program coverage information,
but their generated ranking is based solely on source code files rather than on pro-
gram elements with finer granularity such as statements, blocks, or predicates.
Rahman and Roy [375] combine context-aware query reformulation and IR to
localize faulty entities from project source. It first determines whether there are
excessive program entities in a bug report, then applies reformations to the query,
and finally uses the improved query for fault localization with IR. Amar and Rigby
[376] argue that faulty statements should appear only in failed test logs, but not
successful test logs. In light of this, they remove from failed test logs all the state-
ments that occur also in successful test logs, and then apply IR and kNN to flag the
most suspicious lines for further investigation. Le et al. [377] propose using four
types of features (i.e. suspiciousness score features, text features, topic model fea-
tures, and metadata features) extracted from a bug report and an FL ranking list to
build a model to predict the effectiveness of an IR-based FL technique. Hoang et al.
[378] propose NetML, which utilizes multimodal information from both bug
reports and program spectra for bug localization. Specifically, NetML applies
network Lasso regularization to cluster both bug reports and program methods
based on the similarity of their suspiciousness features. This clustering enforce-
ment allows similar bug reports or methods to reach a consensus that leads
to the same bug.

Algorithmic debugging (also called declarative debugging), first discussed in
Shapiro’s dissertation [8] with more details in [379, 380], decomposes a complex
computation into a series of sub-computations to help locate program bugs. The
outcome of each sub-computation is checked for its correctness with respect to
given input values. Based on this, an algorithmic debugger is used to identify a
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portion of code that may contain bugs. One issue of applying this technique in
practice is that testing oracles may not available for sub-computations.

Formula-based fault localization techniques [212, 381-386] rely on an encoding
of failed execution traces into error trace formulae. By proving the unsatisfiability
of an error trace formula using certain tools or algorithms, the programmer may
capture the relevant statements causing the failure. Jose and Majumdar [383, 384]
propose a technique, BugAssist, which uses a MAX-SAT solver to compute the
maximal set of statements that may cause the failure from a failed execution trace.
In [382], Ermis et al. introduce error invariants, which provide a semantic argu-
ment as to why certain statements of a failed execution trace are irrelevant to
the root cause of the failure. By removing such statements, the bug can be located
with less manual effort. A common weakness of these techniques [382-384] is that
they only report a set of statements that may be responsible for the failure without
providing the exact input values that make the executions go to those statements.
Christ et al. [381] address this problem by reporting an extended study based on
error invariants [382] that encodes a failed execution trace into a flow-sensitive
error trace formula. In addition to providing a set of statements that are relevant
to the failure, they also specify how these statements can be executed using differ-
ent input values. Lamraoui and Nakajima [385] propose a formula-based fault
localization method for automatic fault localization, which combines the
SAT-based formal verification techniques with Reiter’s model-based diagnosis
theory. They implement their method by following the MaxSAT approach and
the using Yices SMT solver. Their method gives a high performance in both single
and multiple fault problems according to experiments using their tool SNIPER. Le
et al. [212] propose Savant, a new fault localization approach that employs a
learning-to-rank strategy, using likely invariant diffs and suspiciousness scores
as features, to rank methods based on their likelihood of being a root cause of a
failure. Savant has four steps: method clustering and test case selection, invariant
mining, feature extraction, and method ranking. Savant then produces a ranked
list of potentially buggy methods. However, such learning-to-rank strategy can
be greatly influenced by the size of the recommended files with respect to the effi-
ciency in detecting bugs [387]. Roychoudhury and Chandra [386] give a discussion
about computer-assisted Debugging techniques. First, the authors present a major
challenge in debugging - the lack of specifications capturing the intended behavior
of the program. Then, they discuss how the symbolic execution techniques help
debugging against this challenge. Finally, they give a forward-looking view of sym-
bolic analysis used for automated program repair.

During program maintenance, source code may be modified to fix bugs or
enhanced to support new functionalities. Regression testing is also conducted to
prevent invalidation of previously tested functionality. If an execution fails, the
programmer needs to find the failure-inducing changes. Crisp [16] is a tool to build
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a compliant intermediate version of the program by adding a partial edit (i.e. a sub-
set of recent changes) to the code before the maintenance is performed. This tool
helps programmers focus on a specific portion of changes in the code during the
debugging. Wu et al. [388] conduct an empirical study to characterize the crash
inducing changes. Later, a learning model that uses these features and historical
crash data is built to locate crashing changes from a given set of crash reports.

Chen et al. [389] apply SFBL to diagnose problems in SDN network. The SDN-
based coverage matrix consists of entries of flow rules, test cases constructed by
rows and columns of association table, as well as the result vector that represents
the state of the last judged network behavior.

Christi et al. [390] apply SFBL to reduce search space in test-based software mod-
ification (TBSM) when building resource-adaptive software. The modification is
the diff between the original program and the adaptation. The purpose of resource
adaptations is to avoid faults in correctness or performance that occur in low-
resource settings. In order to map FL to TBSM, the “faulty code” in TBSM is
the code that needs to be modified or removed for an adaptation, the “failing tests”
are the labeled tests that are marked as pertaining to a feature to be removed from
the program, and the “passing tests” are the unlabeled tests or retained tests.

Concurrent programs are becoming more prevalent in applications that affect
our everyday lives. However, due to their non-determinism, it is very difficult to
debug these programs. It is proposed that injecting random timing noise into many
points within a program can assist in eliciting bugs. Once the bug is triggered, the
objective is to identify a small set of points that indicate the source of the bug. In
[247], the authors propose an algorithm that iteratively samples a lower dimen-
sional projection of the program space and identifies candidate-relevant points.
Refer to Section 1.7.7 for more discussions.

1.3.9 Distribution of Papers in Our Repository

Figure 1.3 shows the distribution of papers in our repository across all categories.
Spectrum-based is the most dominant category with 34% of all the papers® fol-
lowed by model-based, which contains 17%, and sliced-based, which contains
16%. The number of papers in each of the statistics-based, program state-based,
spreadsheet-based, and others categories is between 5 and 9%, followed by
machine learning-based, which is 3%. The data mining and IR-based categories
have the fewest number of papers, constituting only 2% each.

We present below the distribution using a different classification: static and
dynamic slice-based, execution slice and program spectrum-based, and other tech-
niques (see Endnote 3 for the rationale). Figure 1.4 gives the number of papers
published each year with respect to this new classification. The first (leftmost)
bar gives the total number of papers from 1977 to 1995, the last (rightmost) only
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Figure 1.4 Number of papers published each year with respect to three different
categories.

counts papers from 2016, and those in between give the number in the correspond-
ing year. Figure 1.5 displays the information from a cumulative point of view. Each
data point gives the cumulative number of papers published up to the correspond-
ing year. From these two figures, we make the following observations:

o Static and dynamic slice-based techniques were popular between 2002 and 2007.
However, the number of papers each year in this category has decreased
since then.
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e The number of papers on execution slice and program spectrum-based techni-
ques has increased dramatically since 2008, indicating that more studies are
focused on these techniques rather than static or dynamic slice-based techni-
ques in the recent years.

1.4 Subject Programs

Table 1.6 presents a list of popular subject programs used to study the effectiveness
of different fault localization techniques. This table gives the name, the size (lines
of code), a brief description of the functionality, the programming language, and
the number of papers that use this program.

We notice that the Siemens suite is the most frequently used. However, every
program in the suite is very small, with less than 600 lines of code (excluding blank
lines). Another important point worth noting is that most of the bugs used in the
experiments are mutation-based artificially injected bugs. Although mutation has
been shown to be an effective approach to simulate realistic faults [214, 391-393],
some real-life bugs are very delicate and cannot be modeled by simple first-order
mutants.

With the introduction of advanced techniques in software fault localization,
more accurate cross comparisons of their effectiveness are in demand. Further-
more, the feasibility of a technique and the benefits of using it should be

47



48

1 Software Fault Localization: an Overview of Research, Techniques, and Tools

Table 1.6 Summary of popular subject programs used in the fault localization studies.

Size (Lines Number

Name of code) Brief description Language of papers

Siemens: tcas 173 Altitude separation C 106

Siemens: 412 Priority scheduler C 102

schedule

Siemens: 565 Lexical analyzer C 102

print_tokens

Siemens: 563 Pattern recognition C 100

replace

Siemens: 510 Lexical analyzer C 98

print_tokens2

Siemens: 307 Priority scheduler C 98

schedule2

Siemens: 406 Information measure C 97

tot_info

grep 12 653 Command-line utility for C 38
searching plain-text data sets

space 9126 ADL Interpreter C 36

gzip 6573 Data compression C 36

sed 12 062 GNU batch stream editor C 20

flex 13 892 Lexical analyzer generator C 18

NanoXML 7646 XML parser Java 17

Unix: Cal 202 Print a calendar for a specified C 13
year or month

Unix: Col 308 Filter reverse line C 13

Unix: Tr 137 Translate characters C 13

Unix: Spline 338 Interpolate smooth curves based C 12
on given data

Unix: Uniq 143 Report or remove adjacent C 12
duplicate lines

Unix: Chckeq 102 Report missing or unbalanced C 11
delimiters and .EQ/.EN pairs

make 20 014 Manage building of executable C 10
and other products from code

Ant 75 333 Java applications builder Java 10

XML-sec 21 613 Library for XML encryption C 9



Table 1.6 (Continued)

1.4 Subject Programs

Size (Lines Number

Name of code) Brief description Language of papers

Unix: Look 170 Find words in the system C 7
dictionary or lines in a sorted list

Unix: Comm 167 Select or reject lines common to  C 6
two sorted files

tar 25 854 Tool to create file archives C 6

DC 2700 Reverse-polish desk calculator Java 5

Unix: Crypt 134 Encrypt and decrypt a file usinga C 5
user-supplied password

Unix: Sort 913 Sort and merge files C 5

gce 222 196 GNU C compiler C 5

apache 85 661 HTTP server for hosting web C 5
applications

schoolmate 4263 A PHP/MySQL solution for PHP 4
administering schools

FAQforge 734 A tool for creating and managing  PHP 4
documents

webchess 2226 An online chess game JS and 4

PHP

jtopas 5400 Text parser Java 4

timeclock 13 879 A web-based clock system C

phpsysinfo 7745 Displays system information, e.g. C 3
uptime, CPU, and memory

TCC 1900 A small and fast compiler for the C 3
C programming language

Xerces 52 528 XML parser C++ 3

Mozilla 21IM Web browser Cand 3

Firefox C++

tidy 31132 A text editor for editing web C++ 3

content

demonstrated in an industry-like environment, in contrast to an academic
laboratory-oriented controlled environment. In response to these challenges, more
and more studies use larger and complex programs in their experiments. Another
trend is to use bugs actually introduced at the development phase such as those

from Bugzilla for the gcc program and the bugs for Mozilla Firefox.
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1.5 Evaluation Metrics

Since a program bug may span multiple lines of code, which are not necessarily
contiguous or in the same module, the examination of suspicious code stops as
long as one faulty location is identified. This is because the focus is to help pro-
grammers find a good starting point to initiate the bug-fixing process rather than
to provide the complete set of code that must be modified, deleted, or added with
respect to each bug. With this in mind, the effectiveness of a software fault local-
ization technique is defined as the percentage of code” that needs to be examined
before the first faulty location for a given bug is identified.

The T-score [188, 214] estimates the percentage of code a programmer need not
examine before the first faulty location is found. A PDG is constructed, and the
nodes are marked as faulty if they are reported by differencing the correct and
the faulty versions of the program, and blamed if they are reported by the localizer.
For a node n, the corresponding k-dependency sphere set (DS},) is the set of nodes for
which there is a directed path of length no more than k that joins n and them. For
example, DS, contains the node n itself. DS; includes not only n but also all the
nodes such that there is an edge from them to n, or from n to them. For a report
R (i.e. a set of nodes the localizer indicates as possible locations of the bug), let
DS, (R) be the smallest dependency sphere that includes a faulty node. The T-score
of a given R is computed using the ratio of the number of nodes in its smallest
dependency sphere to the number of nodes in the entire PDG:

| DS.(R) |

T-score =1— [PDG |

The use of T-score requires that programmers are able to distinguish defects
from non-defects at each location and can do so at the same cost for each location
considered [193]. Furthermore, it assumes that programmers can follow the con-
trol- and/or data-dependency relations among statements while searching for
faults.

The EXAM [117, 144, 201, 202, 277] or Expense [107] score is the percentage of
statements in a program that has to be examined until the first faulty statement is
reached:

Number of statements examined
EXAM score = , x 100%
Total number of statements in the program

In [107], the authors use the executable statements instead of the total number of
statements. For techniques such as [394] that generate a ranking of predicates
(instead of statements) sorted in descending order of their fault relevance, the
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EXAM score can also be computed in terms of percentage of predicates that need
to be examined. The P-score [123] defined as follows uses the same approach:
1-based index of Pin L

P-score = - —— X 100%
number of predicates in L 0

where L is a list of sorted predicates as described above, P is the most fault-
relevant predicate to a fault, and the notation of 1-based index means the first pred-
icate of L is indexed by 1 (rather than 0). Studies in [117, 197, 201, 202, 277] also
provide figures that report the percentage of all the faulty versions of a given pro-
gram in which faults can be located by the examination of an amount of code less
than or equal to a given EXAM score. A similar idea is subsequently used by Gong
et al. to define the N-score [105]:

N detected

N-score = X 100%

statistic

When compared to T-score, EXAM is easier to understand, as it is directly pro-
portional to the amount of code to be examined rather than to an indirect meas-
urement in terms of the amount of code that does not need to be examined (as what
T-score does). In summary, the lower the EXAM score (or Expense or P-score), the
more effective the technique, whereas it is the opposite for the T-score (i.e. the
lower the T-score, the less effective the technique).

The Wilcoxon signed-rank test (an alternative to the paired Student’s t-test when
a normal distribution of the population cannot be assumed) can also be used as a
metric to present an evaluation from a statistical point of view [197, 203]. If we
assume a technique a is more effective than another technique f, we examine
the one-tailed alternative hypothesis that § requires the examination of an equal
or greater number of statements than a. The confidence with which the alternative
hypothesis can be accepted helps us determine whether a is statistically more
effective than f. Another metric is the total (cumulative) number of statements
that need to be examined to locate all bugs of a given scenario [117, 197, 201,
202]. This metric gives a global view in contrast to the Wilcoxon test, which focuses
more on individual pairwise comparisons.

An effective fault localization technique should assign a unique suspiciousness
value to each statement; in practice, however, the same suspiciousness may be
assigned to different statements. If this happens, two different levels of effective-
ness result: the best and the worst. The best effectiveness assumes that the faulty
statement is the first to be examined among all the statements of the same suspi-
ciousness. The worst effectiveness occurs if the faulty statement is the last to be
examined. Reporting only the worst case (such as [139, 395]) or only the best case
(such as the P-score in [123]) may not give the complete picture because it is very
unlikely that programmers will face the worst or the best case scenario in practice.
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In most cases, they will see something between the best and the worst. It is
straightforward to compute the average effectiveness from the best and worst effec-
tiveness. However, the converse is not true. Providing the average effectiveness
offers no insights on where the best and worst effectiveness may lie, and, more
seriously, can be ambiguous and misleading. For example, two techniques can
have the same average effectiveness, but one has a smaller range between the best
and the worse cases while the other has a much wider range. As a result, these two
techniques should not be viewed as equally effective as suggested by their average
effectiveness. Thus, a better approach is to report the effectiveness for both the best
and the worst cases such as [117, 201, 202, 277] and perform the cross-evaluation
under each scenario.

All the evaluation metrics discussed above are based on an assumption of perfect
bug detection, which is the same as having an ideal user [188] to examine suspi-
cious code to determine whether it contains bugs. That is, a bug in a statement will
be detected if the statement is examined. However, a recent study [396] indicates
that such an assumption does not always hold in practice. If so, the number of
statements that need to be examined to find the bug may increase. Xie et al.
[397] report that fault localization techniques might even slightly weaken pro-
grammers’ abilities in identifying the root faults. On the other hand, Xia et al.
[398] suggest that the studies [396] and [397] suffer from several drawbacks:
(i) only using small-sized programs, (ii) only involving students, and (iii) only
using dated fault localization techniques. The discussion by Le et al. [399] is also
similar. In response, Xia et al. conduct a study based on four large-sized open-
source projects with professional software programmers. They find that fault local-
ization techniques can help professionals reduce their debugging time, and the
improvements are statistically significant and substantial. To investigate how fault
localization should be improved to better benefit practitioners, Kochhar et al. [204]
highlight some directions by conducting a literature review.

There are other factors that may affect the effectiveness of a software fault local-
ization technique. Bo et al. [100] present a metric, Relative Expense, to study the
impact of test set size on the Expense score. More discussion regarding the impact
of test cases on fault localization appears in Section 1.7.2. Monperrus [400] sug-
gests that effectiveness should be evaluated with respect to different classes of
faults. It is possible that one technique is more effective than another for bugs that
can be triggered consistently under some well-defined conditions (namely,
Bohrbugs in [76]), but less effective for bugs whose failures cannot be systemati-
cally reproduced (namely, Mandelbugs). Instrumentation overhead, interference
within multiple bugs, and programming language also have an impact on effec-
tiveness of fault localization [401, 402].

Last but not least, it is important to realize that software fault localization tech-
niques should not be evaluated only in terms of effectiveness as described above
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[396]. Other factors such as computational overhead, time and space for data col-
lection, amount of human effort, and tool support need also be considered. In addi-
tion, we also need to emphasize user-centered aims such as how programmers
actually debug, how they reveal the cause-effect chains of failures, and how they
decide upon solutions beyond a suspiciousness ranking of code. Unfortunately,
none of the published studies has reported a comprehensive evaluation covering
all these aspects.

1.6 Software Fault Localization Tools

One challenge for many empirical studies on software fault localization is that they
require appropriate tool support for automatic or semiautomatic data collection
and suspiciousness computation. Table 1.7 gives a list of commonly used tools,
including name, a brief description, availability, and which papers use the tool.
Out of the 82 tools, three are commercial, 20 are open source, 12 are openly acces-
sible but the source code is not available, and the rest may be acquired by contact-
ing their authors.

Table 1.7 Summary of tools used in the fault localization studies.

Papers using

Name Brief description Availability the tool

Ample Eclipse plug-in for identifying faulty =~ Openly [95]
classes in Java program accessible

Apollo Automatic tool that efficiently finds ~ Via author [403]

and localizes malformed HTML and
execution failures in web
applications that execute PHP code
on the server side

Atomizer A dynamic atomicity checker Via author [404]
AUTOFLOX  Automated fault localization tool Via author [150]
based on dynamic backward slicing
ATAC/yslice  Slicing and dicing tool for ANSI Via author [140, 166, 175]
C programs
BARINEL Framework to combine spectrum- Via author [318]

based fault localization and model-
based diagnosis

BigDebug Interactive debugger for big data Via author [405, 406]
analytics in Apache Spark

(Continued)
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Table 1.7 (Continued)

Papers using

Name Brief description Availability the tool

BigSift Debugging tool kit for big data Via author [405, 407]
analytics

BugAssist Fault localization tool for ANSI-C Via author [383, 384]
programs

BugFix A machine learning-based tool for Via author [408]
program debugging

c2v Validation tool for C code coverage  Via author [409]
tools

Chianti Impact analyzer of program changes  Via author [26]
for Java programs

Chislice Execution slicing tool Via author [166]

Chord Debugging tool for concurrent Via author [410]
program

CIL Tool for extracting control flow Via author [304]

framework graph and data flow information
from C programs

Clover Tool for collecting execution trace Commercial [101]
information for Java programs

CnC Static checking and testing tool Openly [411]

accessible

CPTEST A framework for automatic fault Via author [412]
detection, localization, and
correction of constraint programs

CRADLE Validation tool for deep learning Via author [413]
libraries

Crisp Eclipse plug-in for constructing Via author [26]
intermediate versions of a Java
program that is being edited

Daikon Dynamic invariant detector Open source [207, 414]

DBGBENCH Tool benchmark for debugging in Openly [415]
practice accessible

DejaVu Regression test selection tool Via author [181]

Delta Tool for delta debugging Open source [256]

Diablo A link-time optimizer Open source [260]

DiffJ Tool for comparing different Open source [139]

versions of programs to find bugs
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Table 1.7 (Continued)
Papers using

Name Brief description Availability the tool

Doxygen Source code documentation Open source [352]
generator and static analysis

DrDebug Debugging tool integrating dynamic ~ Open source [142, 154]
slicing and GDB debugger

ESC/Java Compile-time program checker to Open source [411]
detect precondition violations

FindLeaks Aspect-based tool to locate memory  Via author [353]
leaks in Java programs

Geov Profiling tool to collect program Open source [100, 104, 223,
spectra 416]

GNU GDB A debugger developed by GNU Open source [83]

gprof GNU'’s profiling tool Open source [88]

GoalDebug Constraint-based spreadsheet Via author [417]
debugging tool

GZoltar An automated testing and debugging  Openly [418, 419]
framework accessible

HOLMES Statistical debugging tool Via author [240]

HSFal Hybrid slice spectrum fault locator Via author [144]

iFL A support tool for interactive fault Open source [420]
localization in Eclipse IDE

JaCoCo Java code coverage library Open source [419]

Jaguar A spectrum-based fault localization =~ Open source [421]
tool

JARDIS Debugging tool for JavaScript/Node.  Via author [422]
js

JavaPDG A new platform for program Openly [423]
dependence analysis accessible

JCoverage A tool for coverage analysis Open source [215]

JCrasher Java test cases generator to exhibit Open source [411]
the error

Jhawk Java static analysis tool Commercial [97]

JMutator Mutation tool using seven mutation = Open source [424]
operators for Java programs

JTracor Tool for collecting execution trace Via author [424]

for Java programs

(Continued)
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Table 1.7 (Continued)

Papers using

Name Brief description Availability the tool

JUMBLE Tool for detecting destructive races Via author [425]

Phoenix A framework for developing Openly [240]

Framework compilers as well as program accessible
analysis, testing, and optimization (from

Microsoft)

MCFuzz Debugging tool for software model ~ Via author [426]
checkers

MDebugger A model-level debugger for RTE Via author [427]
systems in the context of UML-RT

Microsoft A debugging tool embedded in Commercial [84]

Visual Microsoft Visual Studio

Studio

Debugger

MZoltar Automatic debugging tool for Via author [419]
android applications

N-Prog Tool for bug detection and test case ~ Via author [428]
generation using random mutation
and N-variant systems

NonDex Tool for detecting and debugging Via author [429]
wrong assumptions on Java API
specifications

Pinpoint Fault localization tool using Jaccard ~ Via author [95]
coefficient

Penelope Tool for atomicity violations Via author [430]
detection

RADAR Debugging tool for regression Openly [431]
problems in C/C++ programs accessible

RacerX Debugging tool for concurrent Via author [432]
program

Reactive Debugger for reactive programs Open source [433]

Inspector integrated with Eclipse Scala IDE

RxFiddle Visualization and debugging tool for ~ Via author [434]
reactive extensions

Signpost Tool for matching program behavior ~ via author [435]
against known faults

SLAM Debugging tool using static analysis ~ Openly [329]

toolkit accessible

SLforge CPS tool chain testing scheme Via author [436]
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Table 1.7 (Continued)
Papers using
Name Brief description Availability the tool
SLOCCount  Tool for counting executable Open source [214, 241]
statements
SmartDebug  Interactive debug assistant for Java ~ Via author [437]
Spyder Back-tracing debugger based on Via author [140]
dynamic slicing
SNIPER A formula-based fault localization Via author [385]
tool
Tarantula Fault localization tool using Openly [95, 175, 214]
Tarantula accessible
TPTP Eclipse plugin for profiling Openly [89]
accessible
VART Eclipse plugin for debugging Openly [438]
regression faults accessible
VIDA Visual interactive debugging tool Via author [439]
VHDLDIAG A VHDL fault localization tool based ~ Via author [343]
on model-based diagnosis
WhoseFault  Debugging assignment tool Via author [440]
Whyline An interactive debugging tool Openly [359]
accessible
Xlab X window system events recorder Open source [361]
Zoltar Spectrum-based fault localization Via author [199]
tool
Zoltar-M Tool for detecting multiple bugs Via author [416]
yProf Tool using execution trace to locate ~ Via author [171]
performance bottlenecks
xRegress Regression test set minimization tool ~ Via author [171]
using program coverage and
execution cost
ySuds Tool for collecting execution trace Via author [117, 171, 173,
information for C programs 178, 197,
201-203, 277]
¥Vue Heuristics involving the control Via author [171]

graph, execution trace, and the
maintainer’s knowledge to help
locate features and identify feature
interactions
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1.7 Critical Aspects

In this section, we explore some critical aspects of software fault localization.

1.7.1 Fault Localization with Multiple Bugs

The majority of published papers in software fault localization focus on programs
with a single bug (i.e. each faulty program has exactly one bug) [441]. However,
this is not the case for real-life software, which in general contains multiple bugs
[442]. Results of a study [443] based on an analysis of fault and failure data from
two large, real-world projects show that individual failures are often triggered by
multiple bugs spread throughout the system. Another study [444] also reports a
similar finding. This observation raises doubts concerning the validity of some
heuristics and assumptions based on the single-bug scenario. In response, studies
have been conducted using programs with multiple bugs [104, 270, 394, 401,
445-457).

A popular assumption is that multiple bugs in the same program perform inde-
pendently [458]. Debroy and Wong [401] examine possible interactions that may
take place between different bugs, and they find that such interferences may man-
ifest themselves to either trigger or mask some execution failures. Results based on
their experiments indicate that destructive interference (when execution fails due
to a bug but no longer fails when another bug is added to the same program) is
more common than constructive interference (when execution fails in the pres-
ence of two bugs in the same program but does not in the presence of either
bug alone) because failures are masked more often than triggered by additional
bugs. It is also possible that a program with multiple bugs suffers from both
destructive and constructive interferences. DiGiuseppe and Jones [104] also report
that multiple bugs have an adverse impact on the effectiveness of spectrum-based
techniques.

One way to debug a multiple-bug program is to follow the one-bug-at-a-time
approach. Perez et al. [441] study the prevalence of single-fault fixes in open-
source Java projects and suggest that a software application may have many dor-
mant bugs; however, they can be detected and fixed individually, therefore consti-
tuting single-faulted events. If a program experiences some failures while it is
executed against test cases of a given test suite, this approach helps programmers
find and fix a bug. Then, the modified program is tested again using all the test
cases in the given test suite. If any of the executions fail, additional debugging
is required to find and fix the next bug. This process continues until no failure
is observed. At this point, even though the program may still contain other bugs,
they cannot be detected by the current suite of test cases. This approach has been
adopted in studies using the DStar technique [197] and a reasoning fault
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localization technique based on a Bayesian reasoning framework [318].
A potential weakness of most techniques based on Bayesian reasoning (e.g.
[318, 459, 460]) is that they all assume program components fail independently;
in other words, interferences among multiple bugs are ignored, which is not nec-
essarily the case in practice.

In [449], Jones et al. suggest that multiple bugs in a program can be located in
parallel. The first step is to group failed test cases into different fault-focusing clus-
ters such that those in the same cluster are related to the same bug. Then, the
Tarantula fault localization technique [107], failed tests in each cluster, and all
the successful tests are used to identify the suspicious code for the corresponding
bug.

There are different ways to cluster failed test cases. One approach is to use exe-
cution profiles. Podgurski et al. [450] apply supervised and unsupervised pattern
classifications as well as multivariate visualization to execution profiles of failed test
cases in order to group them into fault-focusing clusters. Steimann and Frenkel
[452] use the Weil-Kettler algorithm, a technique widely used in integer linear pro-
gramming, to cluster failed test cases. It is very critical to choose the right cluster-
ing algorithm, as misgrouping can significantly decrease the FL effectiveness for
programs with multiple bugs [461].

However, clustering based on the similarity between execution profiles may not
reflect an accurate causation relationship between certain faults and the corre-
sponding failed executions. For example, two failed tests, even associated with
the same bug, may have very different execution profiles. It is possible for cluster-
ing techniques based on execution profiles to separate these two failed tests into
different clusters.

To overcome this problem, Liu and Han [462, 463] further investigate the due-to
relationship between failed tests and underlying bugs. They apply SOBER [443] to
each failed test case and all the successful tests to generate a corresponding pred-
icate ranking. The weighted Kendall tau distance is computed between these rank-
ings. The distance between two rankings is small if they identify similar suspicious
predicates. It also implies the rank-proximity (R-proximity) between them is high.
Failed test cases with high R-proximity are clustered together, as they are likely to
have the same due-to relationship.

Other variations include the use of more effective fault localization techniques
(such as crosstab [202], RBF [201], and DStar [197]) instead of Tarantula or
SOBER, or using only a subset, rather than all, of the successful tests (see Section
1.7.2). These variations are yet to be explored.

Gao and Wong [464] propose MSeer for locating multiple bugs in parallel. It first
uses a revised Kendall tau distance to measure the distance between two failed
tests, and then applies an approach to simultaneously estimate the number of clus-
ters and assign initial medoids to these clusters. Later, an improved K-medoids
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clustering algorithm is implemented to identify failed tests and their correspond-
ing bugs. Their case studies suggest that MSeer outperforms Jones’s technique
[449] in terms of both effectiveness and efficiency for parallel debugging.

1.7.2 Inputs, Outputs, and Impact of Test Cases

In addition to failed and successful test cases, many (although not all) techniques
discussed in Section 1.3 also need information about how the underlying program/
model is executed with respect to each test case. Such details can be provided via
different execution profiles (e.g. coverage in terms of statement and predicate).

The output of many spectrum-based (Section 1.3.2) fault localization techniques
(such as Tarantula) is a suspiciousness ranking with statements ranked in des-
cending order of their suspiciousness values (such as the rightmost column of
Table 1.3). To locate a bug, programmers will examine statements at higher posi-
tions of a ranking before statements at lower positions because the former, with
higher suspiciousness values, are more likely to contain bugs than the latter.
On the other hand, many slice-based techniques (Section 1.3.1) only return a
set of statements without specific ranking. Referring to Table 1.2, the static slice
for the variable product is a set of eight statements, including sy, S,, 4, Ss, S7, Sg,
s10, and s;3. However, it does not tell programmers which statements are more
likely to contain bugs and should therefore be examined first for possible bug
locations.

Techniques discussed in Section 1.3.3 (statistics-based), Section 1.3.5 (machine
learning-based), and Section 1.3.6 (data mining-based) are likely’ to generate
outputs in terms of suspiciousness rankings similar to those generated by the
spectrum-based techniques, whereas program state-based (Section 1.3.4) and
model-based (Section 1.3.7) techniques are more likely to output a set of
program/model components that will possibly contain bugs but do not explicitly
specify the ranking of each component. Although both types of outputs provide
suspicious components (statements, predicates, etc.) to help locate bugs, the
former further prioritizes these components based on their suspiciousness values,
but the latter does not.

The suite of test cases used in the program debugging is another important factor
that may affect the effectiveness of a fault localization technique [93, 465, 466].
Some fault localization techniques (e.g. [166, 188, 192, 193, 221, 331, 332]) focus
on locating program bugs using either a single failed test case or a single failed test
case with a few successful test cases. Others (e.g. [107, 117, 176, 178, 201, 202, 213,
214, 277]) use multiple failed and successful test cases. These latter techniques take
advantage of more test cases than the former, so it is likely that the latter are more
effective in locating program bugs. For example, Tarantula [107], which uses mul-
tiple failed and multiple successful tests, has been shown to be more effective than
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nearest neighbor [188], a technique that only uses one failed and one successful
test. However, it is important to note that by considering only one successful
and one failed test, it may be possible to align the two test cases and arrive at a
more detailed root-cause explanation of the failure [193] when compared to the
techniques that take into account multiple successful and failed test cases
simultaneously.

Although techniques using multiple failed and multiple successful test cases
may have better fault localization effectiveness, an underlying assumption is that
a large set of such tests is available. This may also lead to the assumption of exist-
ence of an oracle that can be used to automatically determine whether an execu-
tion is successful or failed. Unfortunately, this may not be true in the real world, as
a test oracle can be incomplete, out-of-date, or ambiguous. Studies such as
[467, 468] have reported that for many systems and for much of testing as currently
practiced in industry, testers do not have formal specifications, assertions, or auto-
mated oracles. As a result, they face the potentially daunting task of manually
checking the system’s behavior for all test cases executed. In response to this chal-
lenge, researchers have presented various solutions [469-472]. Nevertheless, how
to generate an automated test oracle still remains an issue that needs to be further
explored. Hence, we cannot take it for granted that there are multiple tests with all
execution results (successes or failures) known.

Using a test suite that does not achieve high coverage of the target program may
have an adverse impact on the fault localization results. During test generation,
different criteria (e.g. requirements-based boundary value analysis, or white-
box-based statement or decision coverage) can be used as guidance. Diaz et al.
[473] use a meta-heuristic technique (a so-called Tabu Search approach) to auto-
matically generate a test suite to obtain maximum branch coverage. In [403, 474,
475], Artzi et al. present a tool called Apollo to generate test cases automatically
based on combined concrete and symbolic executions. Apollo first executes a pro-
gram on an empty input and records a path constraint that reflects the program’s
executed control-flow predicates. New inputs are then generated by changing pre-
dicates in the path constraint and solving the resulting constraints. Executing the
program on these inputs produces additional control-flow paths. Failures observed
during executions are recorded. This process is repeated until a predefined thresh-
old of statements coverage is reached, a sufficient number of faults are detected, or
the time budget is exhausted. Xu et al. [476] introduce a bug detection mechanism
for Python programs. The mechanism first collects an execution trace, and later
encodes this trace and branches that are unexecuted to symbolic constraints. By
solving these constraints, potential bugs as well as their triggering inputs can be
identified. Jiang et al. [477] suggest that test suites satisfying branch coverage
are better than those satisfying statement coverage in effectively supporting fault
localization, whereas Jiang et al. [478] claim that test suites satisfying MC/DC
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coverage are better than those satisfying branch coverage. Furthermore, in [479],
Santelices et al. study the fault localization effectiveness of Tarantula using three
types of program coverage - statements, branches, and define-use pair. They con-
clude that Tarantula using define-use pair coverage is more effective and stable
than that using branch coverage, which is more effective than that using statement
coverage. Based on this, the authors further propose to use a combination of the
three types of coverage to achieve better fault localization effectiveness.

Some researchers argue that it is not efficient to use all the test cases in a given
test suite to locate program bugs. Instead, they use either test case reduction by
selecting only a subset of test cases or test case prioritization by assigning different
priorities to different cases to improve the efficiency of fault localization techni-
ques [100, 477, 480-496]. One approach of test prioritization is to give higher pri-
ority to failed test cases that execute fewer statements, as they provide more
information and minimize the search domain [497]. In [498, 499], the authors pro-
pose an approach to generate balanced test suites in order to improve fault local-
ization effectiveness by cloning failed test cases a suitable number of times to
match the number of successful test cases. Ropler et al. [500] propose a technique,
BUGEX, which applies dynamic symbolic execution to generate test cases with a
minimal difference from the execution path of a single failed test case. Based on
the generated test cases, the branches that are executed by more failed test cases
but fewer successful test cases are more likely to cause the failure. The study in
[191] applies a similar test case generation approach, but the generated test cases
are instead used with a SBFL technique to rank basic blocks in descending order
according to their suspiciousness values. Hui [489] propose a test case generation
technique GIA for fault localization, which combines genetic algorithm and arti-
ficial immune algorithm. Kim et al. [491] propose the Sungkyunkwan enhanced
method, which is a fault localization method with a test case optimization tech-
nique. Zhang et al. [496] propose and evaluate the strategy to remove redundant
test cases with repeated spectrum in coverage information. Results show that test
cases are reduced by 58-99% on average without losing the performance of fault
localization. Li et al. [492] propose a test case selection strategy using the concept
of dynamic basic block (DBB) to select test cases that can potentially distinguish
non-faulty statements from faulty statements. First, they identify all the DBBs such
that the statements in the same DBB are covered by the same test cases in the target
program. Then, they identify all the groups in the target program such that any two
DBBs in the same group are covered by the same test cases. Finally, they identify
one failed test case and use it to initiate the test case selection procedure. Li et al.
[501] apply genetic algorithm to generate test cases for software product lines with
the integration of FL techniques. Each test case is first converted into a unique
binary string. Then, existing test cases are modified via the use of evolutionary
operators such as crossover and mutation to create new test cases. This process
is repeated until a predefined coverage criterion is satisfied. Then, the test set
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created to test a product is evaluated by FL techniques and reused to test another
product of the same family. Liu et al. [502] propose two test case selection strate-
gies to assist debugging process in real life. The first uses coefficient of variance
(CV) to reveal failed test cases. The higher the CV of suspiciousness score of a failed
test case, the more complex will be the distribution of suspiciousness scores of the
statements covered by this test case, therefore requiring more effort for failure
comprehension. The second strategy identifies coincidentally correct test cases
and compares them with similar successful and failed test cases for better fault
diagnosis. Chen et al. [503] suggest clustering the failed and successful test cases
into different groups, each group having the same execution path. They improve
FL effectiveness by selecting one failed group and its nearest successful group.
Lekivetz and Morgan [504] argue that prior knowledge can help assume potential
input combinations and finally identify failure-causing input combinations by
analyzing their occurrence frequency in a test suite.

Baudry et al. [424] use a bacteriological approach (which is an adaptation of
genetic algorithms) to bridge the gap between testing and diagnosis (fault locali-
zation) based on a test-for-diagnosis criterion. Test cases are generated to satisfy
this criterion so that diagnosis algorithms can be used more efficiently. Their
objective is to achieve a better diagnosis (a more efficient fault localization) using
a minimal number of test cases. Perez et al. [505] evaluate a test suite’s diagnosa-
bility for test optimization according to its density (how frequent the components
are involved with tests), diversity (to what extent the combinations of components
are distributed throughout the input domain), and uniqueness (to what extent the
spectra related to the components are distinguishable). Studies such as [111, 486]
focus on a cross-evaluation of the impacts of different test reduction and prioriti-
zation techniques on the efficiency of software fault localization.

Based on manual analysis of more than 100 bug reports and triggering tests, Just
et al. [506] find that developer-provided tests supply more information for fault
localization than user-provided tests. On the other hand, developer-provided tests
may overestimate a technique’s ability to rank a statement by suspiciousness.

Test execution sequence also has an impact on program debugging [507]. For
example, it is possible that a program execution fails not because of the current
test but because of a previous test that does not set up an appropriate execution
environment for the current test. If a failure cannot be observed unless a group
of test cases are executed in a specific sequence, then these test cases should be
bundled together as one single failed test.

1.7.3 Coincidental Correctness

The concept of coincidental correctness, introduced by Budd and Angluin in [508],
discusses the circumstances under which a test case produces one or more errors in
the program state but the output of the program is still correct. This phenomenon
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can occur for many reasons. For example, given a faulty statement in which a var-
iable is assigned with an incorrect value, in one test execution, this value may
affect the output of the program and result in a failure. However, in another test
execution, the value of this variable is later overwritten. Thus, the output of the
program is not affected and failure is not triggered. Studies discussing coincidental
correctness have been reported in recent years [329, 509-517].

Coincidental correctness can negatively impact the effectiveness of fault local-
ization techniques. Ball et al. [329] claim that this is the reason why their tech-
nique fails to locate bugs in 3 out of 15 single-bug programs. Wang et al. [514]
conclude that the effectiveness of Tarantula decreases when the frequency of coin-
cidental correctness is high and increases when the frequency is low.

To overcome this problem, Masri and Assi [512] propose a technique to clean
test suites by removing test cases that may introduce possible coincidental correct-
ness for better fault localization effectiveness. Their technique is further enhanced
by using fuzzy test suites and clustering analysis [518]. Liu et al. [517] propose to
deal with coincidental correctness using a weighted fuzzy classification approach
to identify and manipulate coincidentally correct test cases for fault localization.
Bandyopadhyay and Ghosh [509] suggest a different approach by first measuring
the likelihood of coincidental correctness of a successful test case based on the
average proximity of its execution profile with that of all failed test cases. Such like-
lihood is assigned as the weight of the corresponding successful test case and used
for subsequent suspiciousness computation. Zhang et al. [515] present FOnly, a
technique that relies only on failed test cases to locate bugs statistically, even
though fault localization commonly relies on both successful and failed tests.
Zhang et al. [519] propose a fault localization technique, BlockRank, to calculate,
contrast, and propagate the mean edge profiles between successful and failed
executions to alleviate the impact of coincidental correctness. Zhou et al. [ 520] pro-
pose a new fault-localization approach based on the probability of coincidental
correctness estimated via data-flow and control-flow analyses. They first estimate
the probabilities of wrong temporal values of variables in memory generated by
faulty statements that do not affect the final outputs, and then apply the control
flows of the statements that have use-definition dependencies on these values to
revise the probabilities.

1.7.4 Faults Introduced by Missing Code

One claim that can generally be made against fault localization techniques dis-
cussed in this chapter is that they are incapable of locating bugs resulting from
missing code. For example, slice-based techniques will never be able to locate such
bugs - since the faulty code is not even in the program. Therefore, this code will not
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appear in any of the slices. Based on this, one might conclude that most fault local-
ization techniques are inappropriate for locating such bugs. Although this argu-
ment seems to be reasonable, it overlooks some important details. Admittedly,
the missing code cannot be found in any of the slices. However, the omission of
the code may trigger some adverse effects elsewhere in the program execution,
such as the traversal of an incorrect branch in a decision statement. An abnormal
program execution path (and, thus, the appearance of unexpected code in the
corresponding slice) with respect to a given test case should hint to programmers
that some omitted statements may be leading to control-flow anomalies. This
implies that we are still able to identify suspicious code related to the omission
error, such as the affected decision branch using slice-based techniques.
A similar argument can also be made for other techniques, including but not lim-
ited to program spectrum-based (Section 1.3.2), statistics-based (Section 1.3.3), and
program state-based techniques (Section 1.3.4). Thus, even though software fault
localization techniques may not be able to pinpoint the exact locations of missing
code, they can still provide a good starting point for the search.

1.7.5 Combination of Multiple Fault Localization Techniques

The effectiveness of a fault localization technique is very much scenario depend-
ent, affected by successful and failed test cases, program structures and semantics,
nature of the bugs, etc. There is no single technique superior to all others in every
scenario. Thus, it makes sense to combine multiple techniques and retain the good
qualities of individual techniques while mitigating the drawbacks of each. In
[101, 521], Debroy et al. propose a way to do so by combining the rankings of state-
ments generated by multiple techniques. The advantage of this approach (i.e. com-
bining the rankings) over a design-based integration approach (in which the actual
techniques would somehow be incorporated to form a new technique) is that it is
more cost-effective to realize and is always extensible. Based on a similar idea,
Lucia et al. [522] and Tang et al. [523] independently propose normalization meth-
ods to combine results of different fault localization techniques.

In [200], Abreu et al. address the inherent limitations of SBFL techniques, stat-
ing that component semantics of the program are not considered. They propose a
way to enhance the diagnostic quality of a SBFL technique by combining it with a
model-based debugging approach using the abstraction interpretation generated
by a framework called DEPUTO. More precisely, a model-based approach is used
to refine the ranking via filtering to exclude those components that do not explain
the observed failures when the program’s semantics are considered.

In [524], Wang et al. use two different search algorithms, simulated annealing
and genetic algorithm, to find approximate optimal compositions from 22 existing
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SBFL techniques. However, a search-based approach lacks flexibility and effi-
ciency [525]. For flexibility, the search must be re-performed to update the optimal
composition whenever a new fault localization technique is included. Also, an
optimal composition for one program may not be the optimal for another program,
which means the search process needs to be re-performed when the subject pro-
gram changes. For efficiency, the potential large size of search space makes the
search process very time-consuming.

Spectrum-based and slice-based techniques are both widely used. Combinations
between techniques from these two categories have been reported [139, 395, 526,
527]. For example, in [139], Alves et al. combine Tarantula and dynamic slicing to
improve fault localization effectiveness. First, all the statements in a program are
ranked based on their suspiciousness calculated by using the Tarantula technique.
Then, a dynamic slice with respect to a failure-indicating variable at the failure
point is generated. Statements not in this slice will be removed from the ranking
to further reduce the search domain. In [144], Ju et al. propose a hybrid slice-based
fault localization technique combining dynamic and execution slices. A prototype
tool, hybrid slice spectrum fault locator (HSFal), is implemented to support this
technique.

Hofer and Wotawa [395] emphasize that SBFL techniques (e.g. Ochiai [95])
operated at a basic block level do not provide fine-grained results, whereas tech-
niques based on slicing-hitting-set-computation (e.g. the HS-Slice algorithm [156])
sometimes produce an undesirable ranking with statements (such as construc-
tors), which are executed by many test cases, at the top. To eliminate these draw-
backs, there have been attempts to combine techniques of these two types
[528, 529]. Similar in nature, the work of Christi et al. combine delta debugging
with SBFL to focus the localization to the relevant parts of the program [530].

Other combinations have also been explored. Xuan and Monperrus [531] pro-
pose Multric, a learning-based approach to combining multiple fault localization
techniques. In [403], Artzi et al. combine Tarantula and a technique for output
mapping to reduce the number of statements that need to be examined.
A similar approach is repeated in which Tarantula is replaced by Ochiai and Jac-
card [474]. In [532], Gopinath et al. apply spectrum-based localization in synergy
with specification-based analysis to more accurately locate bugs. The key idea is
that unsatisfiability analysis of violated specifications, enabled by SAT technology,
can be used to compute unsatisfiable cores, including statements that are likely to
contain bugs. In [533], Burger and Zeller propose a technique, JINSI, which com-
bines delta debugging and dynamic slicing for effective fault localization. JINSI
takes a single failed execution and treats it as a series of object interactions (e.g.
method calls and returns) that eventually produce the failure. The number of
interactions will be reduced to the minimum number required to reproduce the
failure, which will reduce the search space needed to locate the corresponding bug.
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1.7.6 Ties Within Fault Localization Rankings

As discussed earlier (in Section 1.3.2), statements with the same suspiciousness
are tied for the same position in a ranking. Results of a study by Xu et al. [120],
using three fault localization techniques on four sets of programs, show that
the symptom of assigning the same suspiciousness to multiple statements (i.e.
the existence of ties in a produced ranking) appears everywhere and is not limited
to any particular technique or program. Under such a scenario, the total number of
statements that a programmer needs to examine in order to find the bugs may vary
considerably. In response, two levels of effectiveness, the best and the worst, are
computed (see Section 1.5). In practice, the more the ties, the bigger the difference
between the best and the worst effectiveness. Ties also make the exact effectiveness
of a fault localization technique more uncertain.

In voting scenarios when voters are unable to select between two or more alter-
natives, the candidates are ranked based on some key or natural ordering, such as
an alphabetical ordering, to break ties. Similarly, when two statements are tied for
the same ranking, the line numbers assigned to them in a text editor can serve as
the key. Other techniques such as confidence-based strategy and data dependency-
based strategy are also used to break ties [117, 120, 202, 224].

1.7.7 Fault Localization for Concurrency Bugs

Concurrent programs suffer most from three kinds of access anomalies: data race
[534, 535], atomicity violation [536-538], and atomic-set serializability violations
[138, 329].

Among the approaches that have mushroomed in recent years, predictive
analysis-based techniques haven drawn significant attention [404, 537-541].
Generally speaking, these techniques record a trace of program execution,
statically generate other permutations of these events, and expose unexercised
concurrency bugs. One potential problem of these techniques is that they may
sometimes report a large number of false positives. For example, only 6 of
97 reported atomicity violations in a study using Atomizer (a dynamic atomicity
checker) are real [404]. On the contrary, a study in [430] using a different tool,
Penelope, for atomicity violations detection reports no false positive.

Tools such as Chord [410] and RacerX [432] can statically analyze a program to
find concurrency bugs. However, since all paths need to be explored, it is imprac-
tical to apply these tools to large, complicated programs. A runtime analysis (such
as [462, 535, 542]), on the other hand, is less powerful than a static analysis but also
produces fewer false alarms. The drawback is that only faults manifested in some
specific executions can be detected.
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Another approach for bug localization in concurrent programs is to use model
checking [543-546]. For instance, Shacham et al. [546] use a model checker to con-
struct the evidence for data race reported by the lockset algorithm. However, due
to the possible exponential size of the search space, it is difficult to adopt this
approach for large-sized programs without compromising its detection capability.

There are other techniques for detecting concurrency bugs. For example, Flana-
gan and Freund use a prototype tool JUMBLE to explore the non-determinism of
relaxed memory models and to detect destructive races in the program [425]. Park
et al. apply a CTrigger testing framework [547] to detect real atomicity violations
by controlling the program execution to exercise low-probability thread interleav-
ings. Park also presents a study to debug non-deadlock concurrency bugs [548].
Wang et al. [ 549] propose a technique to locate buggy shared memory accesses that
are responsible for triggering concurrency bugs. Torlak et al. [550] propose a tool,
MEMSAT, to help in debugging memory models. Koca et al. [551] locate faults in
concurrency programs using an idea similar to SBFL techniques. Xu et al. [552]
apply delta debugging to identify the threads and method invocations that are
essential for causing the failure, while other threads and method invocations
are removed to obtain a smaller stress test for concurrent data structures. The
new execution is forced to replay the original failed execution trace, and guided
back to the failed trace when the execution diverges.

1.7.8 Spreadsheet Fault Localization

Spreadsheet systems represent a landmark in the history of generic software
products. It is estimated that 95% of all US firms use spreadsheets for financial
reporting [553], 90% of all analysts in the industry perform calculations in spread-
sheets [553], and 50% of all spreadsheets are the basis for decisions [554]. Such
wide usage, however, has not been accompanied by effective mechanisms for
bug prevention and detection, as shown by studies such as [555, 556]. As a result,
bugs in spreadsheets are to be blamed for a long list of real problems compiled and
available at the European Spreadsheet Risk Interest Group’s (EuSpRIG) website
(http://www.eusprig.org). A recent study by Reinhart and Rogoff [557] also gives
a similar conclusion. In response to this, many studies regarding spreadsheet fault
localization have been reported [344, 558-569].

A model-based spreadsheet fault localization technique is presented in [344],
using an extended hitting-set algorithm and user-specified or historical test cases
and assertions to identify possible error causes. Hofer et al. [565] apply a
constraint-based representation of spreadsheets and a general constraint solver
to locate bugs in spreadsheets. Another constraint-based approach for debugging
faulty spreadsheets (CONBUG) is presented by Abreu et al. [570, 571], taking a
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spreadsheet and one test case as input to compute a set of faulty candidates. Getz-
ner et al. [572] propose using dynamic slicing and grouping to reduce search space
and using tie-breaking strategies to prioritize cells in order to further improve the
effectiveness of spreadsheets debugging. Almasi et al. [573] apply a search-based
approach to detect deviation failures in financial applications by generating tests to
maximize the discrepancies between the newly implemented Java program and its
legacy version in the form of an Excel spreadsheet. Abraham and Erwig [417]
describe a tool, GoalDebug, for debugging spreadsheets, using a constraint-based
approach similar to that in [565]. Whenever the computed output of a cell is incor-
rect, users can provide an expected value, which is employed to produce a list of
possible changes to the corresponding formulae that, when applied, will generate
the user-specified output. This involves mutating the spreadsheet based on a set of
predefined change (repair) rules and ascertaining whether user expectations are
met. A similar approach also appears in other studies such as [337] and [338]. Deb-
roy and Wong [337] propose a strategy for automatically fixing bugs in both Java
and C programs by combining mutation testing and software fault localization. An
approach of using path-based weakest preconditions is discussed in [338] to gen-
erate program modifications for bug fixing.

Hofer et al. [574] evaluate the effectiveness of 42 spectrum-based techniques in
spreadsheets fault localization. 803 spreadsheets of 2 subject corpora are used in
the experiment. By evaluating the scores of each spectrum-based technique in best,
average, and worst scenarios, the experiment results show that Jaccard, Ochiai,
and Sorensen-Dice are the best performing techniques to diagnose spreadsheets
with SBFL.

Hofer and Wotawa [575] investigate the impact of erroneous cell classification
on the effectiveness of SBFL on spreadsheet debugging. Cases studies on 33 spread-
sheets show that SBFL still computes acceptable results in the case of erroneous
cell classifications: for more than 60% of the evaluated data sets, the number of
cells that must be manually inspected (before the first faulty cell is found) doubles
at most when one cell value is misclassified. When there are two misclassified cell
values, for more than 40% of the spreadsheets, the effort doubles at most.

Abraham and Erwig also present a system, UCheck, which infers header infor-
mation in spreadsheets, performs a unit analysis, and notifies users when bugs are
detected [559]. Hermans et al. [562] suggest a way to locate spreadsheet smells
(possible weak points in the spreadsheet design) and display them to users in
data-flow diagrams. An approach to detect and visualize data clones (caused by
copying the value computed by a formula in one cell as plain text to a different
cell) in spreadsheets is reported in [563].

Other techniques aimed at reducing the occurrence of errors in spreadsheets
include code inspection [576], refactoring [577], and adoption of better spread-
sheet design practices [578, 579].
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1.7.9 Theoretical Studies

Instead of being evaluated empirically, the effectiveness of software fault localiza-
tion techniques can also be analyzed from theoretical perspectives.

Briand et al. [282] report that the formula used to compute the suspiciousness of
a given statement by Tarantula can be re-expressed so that the suspiciousness only
depends on the ratio of the number of failed tests (a,s) to the number of successful
tests (a.s) that execute the statement. Lee et al. [37, 580] prove that Tarantula
always produces a ranking identical to that of a technique where the suspicious-
ness function is formulated as a,s/ (aef + aes). A study by Naish et al. [113] exam-
ines over 30 formulae and divides them into groups such that those in the same
group are equivalent for ranking. Independently, Debroy and Wong [102] also
report a similar study showing that some similarity coefficient-based fault locali-
zation techniques are equivalent to one another. Studies such as Zhang et al. [520]
focus on a cross-evaluation of the impacts of different test reduction and prioriti-
zation techniques on the efficiency of software fault localization.

Xie et al. [581] perform a theoretical study on the effectiveness of some SBFL
techniques. Based on the risk values (which is the same as suspiciousness discussed
in this book), program statements are assigned to one of the three sets, SR Sf-, and
SR based on whether their risk values are higher than, the same as, or lower than
the value of the statement containing the bug. The authors make three assump-
tions: (i) a faulty program has exactly one fault; (ii) for any given single-fault pro-
gram, there is exactly one faulty statement; and (iii) this faulty statement must be
executed by all failed tests. They also assume that the underlying test suite must
have 100% statement coverage. Unfortunately, some of these assumptions are
oversimplified and do not hold for real-life programs. With respect to some
selected techniques (many of which are similarity coefficient-based), they examine
the subset relation between SX and SX generated by the corresponding ranking for-
mulae and conclude that for two techniques, R, and R,, if S§' C Sk> and S5 C &,
then R, is better (more effective) than R, such that the number of statements exam-
ined by R, is less than that examined by R, to find the first faulty statement. One
problem of this proof as reported in [197] is that it does not consider statements in
S§. As a result, for some special cases, even though the proof indicates that one
technique is more effective than another, the former has to examine more state-
ments than or the same number of statements as the latter — contradicting the
result of the proof. Another controversy is that some advanced and effective tech-
niques (e.g. [197, 201, 214, 318]) are excluded, even though they use exactly the
same input data as those included in [581]. Le et al. [194] also question the validity
of [581]. They compare the effectiveness of the five best fault localization techni-
ques based on the theoretical study in [581] with the effectiveness of Tarantula and



1.8 Conclusion

Ochiai, and they find that the latter are significantly more effective than the
former. This directly contradicts the conclusion of [581]. Xie et al. [582, 583] also
apply their theoretical analysis framework to genetic programming-evolved for-
mulae and show that these formulae can be used for effective fault localization.
However, they make the same oversimplified assumptions as those in [581]. In
addition, Ju et al. [584] provide a theoretical analysis on the efficiency of some
FL formulas in debugging programs with multiple bugs based on the number of
faults that are located from certain top statements of the ranking list. However,
this analysis is not applicable to one-bug-at-a-time and parallel debugging, which
are mainstream strategies for multi-fault localization.

There are other theoretical studies for single-bug programs. For example, Lee
et al. [585] identify a class of strictly rational fault localization techniques in which
the suspicious value of a statement strictly increases if this statement is executed by
more failed test cases and strictly decreases if this statement is executed by more
successful test cases. The authors claim that strictly rational techniques do not nec-
essarily outperform those that are not. Therefore, limited attention should be given
to these strictly rational techniques. In [586], Lee et al. further identify a class of
optimal fault localization techniques for locating deterministic bugs (similar to
Bohrbugs defined in [76]) that will always cause test cases to fail whenever they
are executed. In [587], the authors revisit their previously published framework
for theoretically analyzing the performance of risk evaluation formulas that are
used for SBFL. Specifically, they provide justification to the assumptions/concerns
of their framework such as coverage criteria, omission fault, multiple faults, and
inconsistence between empirical and theoretical analyses.

1.8 Conclusion

As today’s software has become larger and more complex than ever before, soft-
ware fault localization accordingly requires a greater investment of time and
resources. Consequently, locating program bugs is no longer an easily automated
mechanical process. In practice, locations based on intelligent guesses of experi-
enced programmers with expert knowledge of the software being debugged should
be examined first. However, if this fails, an appropriate fallback would be to use a
systematic technique (such as those discussed in this survey) based on solid rea-
soning and supported by case studies, rather than to use an unsubstantiated ad
hoc approach. This is why techniques that can help programmers effectively locate
bugs are highly in demand, which also stimulates the proposal of many fault local-
ization techniques from a widespread perspective. It is imperative that software
engineers involved with developing reliable and dependable systems have a good
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understanding of existing techniques, as well as an awareness of emerging trends
and developments in the area. To facilitate this, we conduct a detailed survey and
present the results so that software engineers at all program debugging experience
levels can quickly gain necessary background knowledge and the ability to apply
cost-effective software fault localization techniques tailored to their specific
environments.

A publication repository has been created, including 587 papers and 68 PhD and
Masters’ theses on software fault localization from 1977 to 2020. These techniques
are classified into nine categories: slicing-based, spectrum-based, statistics-based,
machine learning-based, data mining-based, IR-based, model-based, spreadsheet-
based, and additional emerging techniques. The figures and tables presented in the
previous sections strongly indicate that software fault localization has become an
important research topic on the front burner and suggest the trend of ongoing
research directions.

Our analysis shows that the numbers of published papers in each category differ
from each other and that the research interest shifts from one category to another
as time moves on. For example, static and dynamic slice-based techniques
were popular between 2004 and 2007, whereas execution slice and program
spectrum-based techniques have dominated since 2008.

Different metrics to evaluate the effectiveness of software fault localization tech-
niques (in terms of how much code needs to be examined before the first faulty
location is identified) are reviewed, including T-score, EXAM score/Expense,
P-score, N-score, and Wilcoxon signed-rank test. Subject programs and debugging
tools used in various empirical evaluations are summarized. Results of different
empirical studies using these metrics, programs, and tools suggest that no one
category is completely superior to another. In fact, techniques in each category
have their own advantages and disadvantages.

Additionally, effectiveness of these techniques can also be analyzed from theo-
retical perspectives. However, such analyses very often make oversimplified and
nonrealistic assumptions that do not hold for real-life programs. Hence, their con-
clusions in general are only applicable within limited scopes. This implies that a
theoretical analysis alone is not enough. It is advisable to apply both empirical eva-
luations and theoretical analyses to provide a more complete assessment.

We emphasize that effectiveness is not the only attribute of a software fault local-
ization technique that should be considered. Other factors, including overhead for
computing the suspiciousness of each program component, time and space for
data collection, human effort, and tool support, should be included as well. We
also discuss aspects that are critical to software fault localization, such as fault
localization on programs with multiple bugs, concurrent programs, and spread-
sheets, as well as impacts of test cases, coincidental correctness, and faults intro-
duced by missing code.
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To conclude, our objective is to use this book to provide the software engineering
community with a better understanding of state-of-the-art research in software
fault localization, and identify potential drawbacks and deficiencies of existing
techniques, so that additional studies can be conducted to improve their practical-
ity and robustness.

Notes

1 In this chapter, the terms “software” and “program” are used interchangeably.
Also, “fault” and “bug” are used interchangeably.

2 In the rest of paper, “all papers” is used to represent “all papers in our
repository.”

3 Papers that only use execution slice-based techniques (e.g., [166, 178]) are
included in the spectrum-based category because a statement-based execution
slice is the same as ESHS (see Section 1.3.2). The slice-based category contains
papers only using static slicing and/or dynamic slicing.

4 The code can be represented by statements, predicates, functions, and so on

5 Since there are many techniques in each category, it is possible that a particular
technique may behave differently from others in the same category in terms of
the types of outputs generated.
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