Subject Index

A	Baum equation, 2:1084
Absorption, reactive	Bayesian reliability data evaluation, 2:1027
process intensification, 2:881	Beek and Singer model, 1:207
Accident Ordinance (StörfallV), 2:975	Bent coiled tube reactor, 2:866
Accident Release Information Program (ARIP), 2:978	Benzene
Acetylene	dream reaction, 2:808
fuel, 2:728	Bessemer converter, 1:453
Acute exposure threshold level, 2:937	Biocatalytic membrane reactor, 1:432
Adiabatic reactor	Biochemical engineering, 1:83
for nonhomogeneous, gas-liquid systems, 1:185	Biodiesel, 2: 729
for nonhomogeneous, solid–solid systems, 1:185, 187	Biogas, 2:729
heat exchange in, 1:220	Biomass
homogeneous, isothermal, 1:182	fuel, 2: 729
nonisothermal, 1:183	Bioreactors
temperature profile in, 1: 220	in biochemical engineering, 1:144
Adipic acid	Biotechnology
synthesis, 2:805	applications in fluidized-bed reactors, 1:404
Adsorption-distillation process	chemical reaction engineering in, 1:21
process intensification, 2:891	Biot number, 1:41
Adsorption, reactive	Blackman kinetics, 1:485
	Blast furnace
process intensification, 2:884	
Agitator	equilibrium control, 1:160
hollow blade radial flow, 1:633	Bodenstein number, 1: 204, 233
Airlift loop reactor, 1:239	Boiler, 2:738
downcomer, 1:241	Boiling-liquid expanding-vapor explosion (BLEVE), 2:1072, 2:1079
Airlift reactor	Bottom-Blown Oxygen Process (BOP), 1:454
in biochemical engineering, 1:101	Boussinesq approximation, 1:209, 2:1051
Algae	Box–Wilson method, 1:218
definition, 1:483	Brode equation, 2:1084
Aluminum	Bubble anomaly, 1:279
production in Hall–Héroult cells, 1:477	Bubble behavior
Ammonia	gas-evolving electrodes, 1:278
two-stage converter, 1:323	Bubble-cap plate
Annulus reactor, 1:646	in fluidized-bed reactors, 1:379
AOD (Argon-Oxygen-Decarburization) converter, 1:454	Bubble column
Arc furnace, 466, 1:455	gassing devices for, 1:144
Archimedes number	microalgae growth in, 1:489
for fluidized beds, 1:385	Bubble columns, 1:227
Aris' shape-generalized Thiele modulus, 1:80	backmixing, 1:233
Arresters	downcomer, 1:240
for dusts, 2:1008	types, 1:229
flame, 2:1005	Bubble coverage, 1:280
for gases, 2:1002	Bubble curtain, 1:283
Arrhenius number	Bubble detachment, 1:280
modified, 1:75	Bubble distribution, 1:282
Aspergillus sojae	Bubble flow
solid-state fermentation of, 1:405	in fluidized beds, 1:380
ATEX Directive, 2:1007	Bubble geometry, 1:286
ATHEANA, 2:1034	Bubble growth
Attrition	in gas-evolving electrodes, 1:279
in fluidized beds, 1:387	Bubble-growth model, 1:381
of catalyst, 1:387	Bubble nucleation
Autoignition temperature, 2:918	in gas-evolving electrodes, 1:279
Axial dispersion	Bubble rise velocity, 1:232
in metallurgical processes, 1:155	Bubble size
Axial dispersion model	bubble columns, 1:231
application in hydrometallurgy, 1:156	Bubbling bed
3,7	solid recycle system in, 1:386
	Bubbling fluidized bed, 1:393
B	Buddy manager program, 2:1113
Baker equation, 2:1084	Burke-Plummer equation, 1:210
Baker–Strehlow–Tang method, 2:1077	Burkhardt model, 2:1111
Basic process control system, 2:987	Burner
BASIL process, 2:820	for combustors, 2:731
Batch chromatographic reactor (BCR), 1:250	Bursting disk, 2:996
Batch cultivation, 1:109	Butane
Batch process	fuel. 2:728
laboratory studies, 1:163	Butanol
Batch reactor	fuel, 2: 727
mathematical treatment of, 1:26	Bypass
Bath smelting furnace, 1:451	in flow models, 1:158

Ullmann's Reaction Engineering, Vol. 2

@ 2013 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2013 by Wiley-VCH Verlag GmbH & Co. KGaA ISBN: 978-3-527-33371-4

C	Chemical reaction engineering, 1:9
Calorimetry	Chemineer CD6, 1:633
plant and process safety, 2:946	Chemineer HE 3, 1:628
Canadian Environmental Protection Act (CEPA), 2:980 Capillary gap cell, 1:298	Chemostat, 1:637 Chemshear CS2, 1:636
Carbon	Chemshear CS4, 1:636
sequestration, 2:743	Chilton–Colburn analogy, 1: 74
Carbon dioxide	Chromatographic reactor, 1:249
dream reaction, 2:808	analytical, 1:271
Carbon-in-leach (CIL) process	annular, 2:885
equilibrium control, 1:162	batch, 1:263
neural network models, 1:167	macroscopic design, 1:261
process rate limitations, 1:164 Carbon-in-leach (CIL) reactor cascade	microscopic design, 1:262 preparative, 1:259
schematic, 1:168	racemization processes, 1:270
Carbon-in-pulp (CIP) process	simulated moving bed, 1:263
equilibrium control, 1:162	Chromatographic separation
process rate limitations, 1:164	process control, 1:259
Carcinogens	Circulating fluidized bed, 1:382
classification, 2:936	elutriation diagram in, 1:385
Carman–Kozeny equation, 1:210	Circulating fluidized-bed reactor, 1:408
Catalysis	flow structureflow structure of, 1:409
membranes, 1:429, 434	Cleaning
Catalyst activity profiles, 1:335	plant and process safety, 2:963 Coal
adiabatic operation, 1:317	fuel, 2: 725
anisotropic pellets, 1:52	Coalescence
bales, 2: 862	in stirred tanks, 1:635
ceramic or metal foams, 2:863	Coanda micro mixer, 1:525
deactivation, 1:345	Coke
egg-shell, 2: 858	fuel, 2: 726
fixed-bed reactor, 1:308	Combustion
isotropic pellets, 1:52	adiabatic flame temperature, 2:723
laminar flow, 1:314	air/fuel ratio, 2:722
mass- and heat-transfer coefficients, 1:315	chemistry of gases, 2:722
non-adiabatic operation, 1:318 pressure loss, 1:316	chemistry of liquids, 2: 723 chemistry of solids, 2: 723
process intensification, 2:806	combustor types, 2:730
random packing, 2:862	energy conversion, 2:730
regular arrangement of particles, 2:861	flammability limit, 2:722
regular structure, 1:313	flashpoint, 2:723
Shell-type, 1:359	heat transfer, 2:724
soluble polymer-bound, 2:824	ignition, 2: 722
structured packings, 2:861	laminar flame speed, 2:722
thermoregulated phase-transfer, 2:827	pollutant reduction, 2:724
wall-coated tubes, 1:319	process, 2:721
washcoated monolithic, 2:858	quenching, 2:724
Catalyst pellet one-phase model, 1: 201	safety aspects, 2:741 synthesis, 2:743
two-phase model, 1:200	Computational fluid dynamics (CFD), 1: 409
Catalyst pellet temperature	airlift loop reactor, 1:244
blowout of, 1:77	bubble columns, 1:236
hysteresis of, 1:77	in microreactor simulation, 1:575
runaway of, 1:77	stirred tanks, 1:639
stable operating point, 1:76	Configurational-bias Monte Carlo method, 2:814
unstable operating point, 1:76	Continuous cultivation, 1:111
Catalyst recycling, 2:830	Continuous, ideally mixed, stirred-tank reactor
temperature-dependent multicomponent solvent systems, 2:831 Catalysts, heterogeneous	concentration ratio of different reaction order, 1:191 kinetics, 1:193
molecular design, 2:810	mathematical treatment of, 1: 27
Catalysts, homogeneous	Continuous, ideally mixed, stirred-tank reactor, 1:190
molecular design, 2:809	Continuous rotating annular chromatograph (CRAC), 1:250
Catalytic reaction	Continuous stirred tank reactor (CSTR)
degree of occupation, 1:18	bypass, 1:158
heterogeneous complex reaction schemes for, 1:18	cascade of, 1:197
solids mixing in, 1:389	isothermal heterogeneous system, 1:194
Catalytic wall reactor	kinetics, 1:192
characteristic numbers, 2:854	nonisothermal, mathematical treatment of, 1:194
Catastrophic phase inversion, 1:635	residence-time distribution, 1:192 schematic, 1:155
Caterpillar micromixer, 1:525 Cavitation	Control of Industrial Major Accident Hazards (CIMAH) Regulation, 2:977
acoustic, 2:836	Control of Major Accident Hazards (COMAH) Regulation, 2:977
hydrodynamic, 2:838	Converter, 1:452
CDCUMENE process, 1:620	COP micro evaporator, 1:550
CD Tech catalyst bales, 1:617	Copper smelter, 1:464
Cell retention, 1:112	Cracking, thermal
Centrifugal pump	of naphtha, 1:400
in biochemical engineering, 1:148	Crucible furnace, 1:456
Channel furnace, 1:456	Crucible induction furnace, 1:470
Channel induction furnace, 1:473 Chemical Emergency Preparedness Program (CEPP), 2:978	compact vacuum, 1:470 line-frequency, 1:471
Chemical Emergency Preparedness Program (CEPP), 2:978 Chemical kinetics	medium-frequency, 1:471 medium-frequency, 1:472
standard models for metallurgical processes, 1:168	vacuum chamber, 1:471

Crude oil	E	
fuel, 2: 727	Effective diffusion coefficient, 1:46	
Crystallization-chromatography process	Effectiveness factor, 1:47	
process intensification, 2:891	Electric-arc furnace, 1:455, 467	
Crystallization-distillation process process intensification, 2:890	Electrochemical cell design, 1:298	
Crystallization, reactive	Electrochemical reactors, 1:277	
process intensification, 2:882	design, 1:296	
Crystallizer	Electrodes	
mixed suspension, mixed product removal, 1:637	cubic, 1:295	
Current density	horizontal, 1:283	
in gas-evolving electrodes, 1:287	three-dimensional, 1:283	
Cyclohexanol	three-dimensional, bed-current density, 1:294	
synthesis, 2:803	three-dimensional, geometric arrangement, 1:292	
Cyclohexene hydration process, 2:805 Cyclone	three-dimensional, kinetics, 1:293 three-dimensional, uses, 1:295	
in fluidized-bed technology, 1:395	vertical, 1:283	
Cyclone mixer, 1:524	Electrodes, horizontal	
	in electrochemical reactors, 1:289	
D	Electrodes, microporous	
Damköhler number, 1:30	in electrochemical reactors, 1:290	
process intensification, 2:851	Electrode surface	
Danckwerts penetration model, 1:34	bubble behavior, 1:278	
see also Penetration theory	Electrodes, vertical	
Darcy-Oberbeck-Boussinesq model, 1:209	in electrochemical reactors, 1:288 Electromagnetic casting (EMC), 1:469	
Darcy's law, 1:209	Electron-beam furnace, 476, 1:456	
modified, 1:209–210	Electron-beam melting (EBM), 1:455	
Davidson model	Electropolishing	
for fluidized beds, 1:380 Dead-end polymerization, 1:17	in biochemical engineering, 1:124	
Dead-end polymenzation, 1.17 Dead-end reactor, 1:637	Electroslag refining process (ESR), 1:464	
Dead volume	Electrothermal furnace, 1:455	
in flow models, 1:158	production of metals from raw materials	
Dean number	by reduction, 1:456	
for microreactors, 1:578, 584	recovery of metals in, 1:457	
Dean vortex, 1:488	refining of specific metals, 1:456 smelting and melting in, 1:458	
Deflagration-to-detonation transition, 2:928	Electrothermal reactor, 1:454	
Degree of reactor utilization, 1:60–61	Eley–Rideal mechanism, 1:19	
Degussa BMA reactor, 1:333 DEMiS reactor, 2:854	Emergency Planning and Community Right-to-Know	
Density functional theory	Act (EPCRA), 2:978	
process intensification, 2:811	Endothermic reaction, 1:13	
Derived minimal effect level, 2:938	Endothermic reaction	
DESIGNER	in metallurgical furnaces, 1:448	
for design of reactive distillation processes,	Energy storage, 2:739	
1:614	Energy management, 2:685	
Dextran	Enhancement factor, modified, 1:69	
production in a chromatographic reactor, 1:269	Environmental Emergency Plan, 2:980	
1,3-Dialkylimidazolium chloroaluminate, 2: 819 Dialysis cultivation, 1: 115	Enzyme membrane reactor, 1:430	
Diaphragm pump	Eötvös number, 1:239, 655	
in biochemical engineering, 1:149	Ergun equation, 1:655	
Diels-Alder reaction	Ethanol	
of butadiene, 1:667	fuel, 2:727	
Diesel fuel, 2:726	ETHERMAX process, 1:619	
Difasol process, 2:819	Ethylene preparation in a chromatographic reactor, 1:266	
Differential thermal analysis (DTA)	Euler-Euler formulation, 1:606	
plant and process safety, 2:943	Euler-Euler model	
Dimensionless distribution coefficient, 1:36 Dimensionless pellet temperature, 1:77	see Two-fluid model	
Dimersol X process, 2:819	Euler-Lagrange model,	
Dirac delta function, 1:25	see Discrete bubble model	
Direct numerical simulations	European emission trading system, 2:688	
bubble columns, 1:239	Event tree analysis, 2:1017	
Discrete bubble model (Euler-Lagrange model)	Exergy analysis in plant design, 2:691	
bubble columns, 1:238	Exothermic reaction, 1:13	
Dispersion	runaway potential, 2:939	
axial in bubble columns, 1:233	safety evaluation, 2:941	
hydrodynamic, in microreactors, 1: 598 Dispersion model, 1: 390	Explosion, 2:1075	
Distillation	cases of, 2:1075	
catalytic, 1:610	classification into groups, 2:1007	
Distillation column	condensed substances, 2:926	
energy efficiency, 2:698	definition, 2: 926	
Distillation, reactive	gas, 2: 742 mechanism, 2: 927	
applications of, 2:879	models, 2:1075	
process intensification, 2:877	Explosion groups, 2:919	
Double-skeleton electrode, 1:291	Explosion limit, 2:907	
Down cell, 1:478 Drift flux model	determination, 2:909	
Drift flux model airlift loop reactor, 1:241	temperature and pressure Influence, 2:911	
Dust explosion, 2:923, 1081	Explosion protection, 2:1002	
Dusty-gas model, 1:33	Explosive substances	

classification, 2:927	in stirred tanks, 1:633		
testing, 2: 928	Flow		
Extraction, reactive	flow distribution in microreactors, 1:575		
process intensification, 2:881	laminar, 1:626		
Extractive distillation	in packed-bed reactors, 1:209		
process intensification, 2:821, 890	in thin-film reactors, 1:643		
Extrusion, reactive process intensification, 2:892	turbulent, 1:626 Flow number		
Exxon fluid coking process, 1:399	for stirred tanks, 1:627		
Ø1,	Flow regime		
F	heterogeneous or churn-turbulent, 1:230		
Failure	homogeneous, 1:230		
dependent, 2:1029	slug flow, 1:230 Flow separation, 1:553		
repair, 2:1025	Fluid dynamics		
Failure mode and effects analysis (FMEA), 2:1015	bubble columns, 1:235		
Failure probability, 2:989, 1024 Failure rate	Fluidized bed		
plant and process safety, 2:1023	circulating mass flow rate of solids in, 1:384		
Falling-film reactor, 1:642	horizontal gas mixing in, 1:393		
applications of, 1:645	large-diameter, 1:391 plant-scale, 1:391		
Fault tree analysis, 2:1020	pressure gradient in, 1:384		
numerical evaluation, 2:1037 reliability data, 2:1040	residence time of solids in, 1:392		
Fed-batch cultivation, 1:110	solids concentration in, 1:384		
Federal Antipollution Law (Bundes-Immissionsschutzgesetz)	Fluidized-bed combustor, 2:733		
plant and process safety, 2:1142	Fluidized-bed drying, 1:392 Fluidized-bed electrode, 1:295		
Feed-limited growth, 1:20	Fluidized-bed fermenter, 1:405		
Fick's first law, 1:32	Fluidized-bed furnace		
Film theory instantaneous reaction, concentration profiles, 1:66	high-pressure combustion in, 1:400		
Filtration	incineration of sewage sludge in, 1:402		
sterile, 1:93, 147	Fluidized-bed reactor, 1:371		
Filtration, reactive	bed forms for, 1:373 in biochemical engineering, 1:114		
process intensification, 2:893	biogas production in, 1:404		
Fireballs, 2:1071 Fire point, 2:921	biotechnology applications in, 1:404		
Fischer—Tropsch synthesis, 1:398	bubbling, 1:407		
Fixed-bed reactor	catalytic reaction in, 1:389		
in biochemical engineering, 1:115	elutriation in, 1:382 estimation of transport disengaging height, 1:382		
Fixed-bed reactor, autothermal, 2:869	fluid-mechanical principles, 1:374		
combination of exo- and endothermic reactions, 2:873	gas distribution in, 1:380		
equilibrium-limited reactions, 2:872 total oxidation, 2:871	gas mixing in, 1:392		
types of, 2: 870	gas–solid reaction systems, 1:375		
weakly exothermic reactions, 2:870	Geldart diagram for, 1:376 heterogeneous catalytic gas-phase reaction in, 1:396		
Fixed-bed reactor, catalytic	mathematical modeling, 1:406–407		
adiabatic, 1:306, 320	multiscale CFD modeling of, 1:410		
adiabatic, design concepts, 1:318 autothermal, 1:306	noncatalytic gas-solid reaction in, 1:389		
autothermal, with recuperative heat exchange, 1:338	polymerization of olefins in, 1:399		
catalyst packings, 1:363	pressure profile in, 1: 382 Scale-up, 1: 411		
catalyst types, 1:309	synthesis of acrylonitrile in, 1: 397		
cooled, 1:330	two-phase model, 1:408		
decocking, 1:345 feed cycling, 1:356	Wirth state diagram for, 1:380		
gas-phase reactions, 1:305	Fluidized-bed roaster, 1:378		
heated, 1:331	Fluidized-bed systems, 1:410		
heat-transfer media, 1:327	Forced-flow membrane reactor, 1:431 Forchheimer model, 1:209		
influence of coolant flow, 1:337	Frank-Kamenetzki		
instabilities, 1:342 integrated heat exchange, 1:324	approximation, 1:79		
interstage heat transfer, 1:321	temperature profile, 2:939		
isothermal, 1:306	Frequency distribution, 1:23		
liquid-phase reaction, 1:358	Froude number, 1:235 for fluidized beds, 1:383		
liquid upflow, 1:363	for gas-evolving electrodes, 1:285		
multitubular, 1:306 multitubular, design concepts, 1:325	low fuel vapor, 2:1063		
periodic flow reversal, 1:349	for stirred tanks, 1:626		
temperature profiles, 1: 353	Fuel		
thermal and reaction front, 1:344	characterization, 2:725 Furnace, 2:731		
thermoplate, 1:328	Fused-salt electrolysis cell, 1: 477		
Flammability	sodium recovery in, 1:478		
gases and vapors, 2:906 of gases in the GHS, 2:914	• *		
Flash fire, 2:1070	G		
Flash point, 2:921	Galileo number, 1:243		
test equipment, 2:922	modified, 1:655		
Flash smelting furnace, 1:452	for trickle-bed reactors, 1:655		
Flat-panel airlift reactor, 1:489 Flat-plate reactor, 1:488	Gas chemically unstable, 2:917		
Flat-plate reactor, 1:488 Flex fuel vehicles, 2:730	combustion systems, 2:735		
Flexi-coking process, 1:400	flammability, 2:914		
Flooding	oxidizing potential, 2:915		

Gas chromatographic reactor, 1:266	pinch technology, 2:713
Gas distribution	process intensification, 2:849
bubble columns, 1:229 Gas distributor	without heat recovery, pinch technology, 2:711 Heat exchanger network (HEN), 2:710
for fluidized beds, 1:379	Heat-exchanger reactor, 1:604
horizontal gas jets, 1:380	countercurrent, 1:604
vertical gas jets, 1:380	2D finite-volume simulation, 1:605
Gas engine, 2:735	3D finite-volume simulations, 1:605
Gas evolution efficiency, 1:282 Gas-evolving electrodes, 1:277	Heat-integrated distillation column (HIDIC), 2:695 Heat-transfer coefficient, 1:74
backflow, 1:284	Heating
charge-transfer overpotential, 1:287	types of, in metallurgical furnaces, 1:456
diffusion overpotential, 1:287	with laser, 1:456
mass transfer, 1:285	Heat transfer
Gas-heated reformer, 1:333	airlift loop reactor, 1:244
Gas-lift systems in electrochemical reactors, 1:291	bubble columns, 1:235 in gas-evolving electrodes, 1:287
Gas-liquid systems	in microreactors, 1:581
in stirred tanks, 1:632	process-to-process, 2:708
Gas-solid Fluidized-bed reactor	with reaction in series, 1:74
mathematical modeling, 1:407	with simultaneous reaction, 1:79
Gas-sparged reactor, 1:633 Gasification, 2:733	in thin-film reactors, 1:643 in trickle-bed reactors, 1:658
Gas-liquid hydrodynamic models, 1:236	Heaviside step function, 1:25
Gasoline, 2:726	HEN see Heat exchanger network
GASP, 2:1043	Herringbone mixer, 1:526
Gas sparger, dynamic, 1:229	H-Statements, 2:933
ejector jet nozzle, 1:229	Higbie penetration model
momentum-transfer tube, 1:229 two-phase jet nozzle alone, 1:229	for simultaneous reactions, 1:54 High-temperature Winkler (HTW) process, 1:403
Venturi tube, 1:229	Hinterland ratio, 1:60
Gas sparger, static, 1:229	Holdup gas
dip tube, 1:229	airlift loop reactor, 1:242
perforated plates and ring, 1:229	bubble columns, 1:233
porous plates, 1:229 Gas tungsten arc welding (GTAW)	Holdup, liquid dynamic, 1:655
in biotechnology, 1:117	external, 1:655
Gas turbine, 2:735	internal, 1:655
Glass	residual, 1:655
in biochemical engineering, 1:125	Honeycombs, 2:857
Globally harmonized system (GHS), 2:972	Human error
for the classification and labelling of chemicals, 2:906	plant and process safety, 2:1030 Hybrid membrane process, 2:891
Glucose	Hydroformylation
isomerization of, in a chromatographic reactor, 1:268	catalysts for, 2:809
Graphite furnace, 1:465	Hydrogen
Greenhouse gas emission	fuel, 2:728
energy management, 2:688	release from gas-evolving electrodes, 1:281 Hydrogen peroxide propylene oxide (HPPO)
	process, 2:802
H Halder Torses HTCD reference 1,222	Hydrophilic polyalkene oxide (PAO), 2:827
Haldor Topsoe HTCR reformer, 1:333 Hardware fault tolerance, 2:989	Hyflon membrane, 1:436
Hashimoto chromatographic reactor, 1:254	
Hatta number, 1:62–64	I
modified, 1:69	Impeller
Hazard	for stirred tanks, 1:627
characteristics of exothermic processes, 2:942 Hazard and operability study (HAZOP)	marine-type, 1:191 Incident Ordinance (StörfallV)
guide words, 2:1018	plant and process safety, 2:1144
plant and process safety, 2:1015	Induction furnace, 469, 1:456
Hazard assessment, 2:958	channel induction, 1:469
Hazard classes, 2:907	crucible induction, 1:469
Hazardous materials	special, 1:474
handling, 2:961 Hazardous substances	Inoculation, 1:109 Interelectrode gap
carcinogenic properties, 2:934	flow in, 1:283
classification, 2:929	Ohmic resistance of, 1:282
exposure control, 2:935	Interfacial area, specific
plant and process safety, 2:906	bubble columns, 1:234
regulations, 2: 930 short-term exposure limits, 2: 937	Internal combustion engine, 2:734
toxic effect, 2:931	Ionic liquids process intensification, 2:818
Health and Safety at Work (HASAW) Act, 2:977	Iron blast furnace, 1:450
Heat and power (CHP) plant, 2:686	Isasmelt process, 1:452
Heat exchanger	
counterflow, 1:540	J
cross-flow, 1:539 electrically powdered, 1:542	Jet fire, 2:1072
energy efficiency, 2:698	Joule effect
heat pipe, 1:544	in furnaces, 1:468 Joule–Thomson microcooler, 1:541
induction heating, 1:542	Joule's law
microwave, 1:542 optimum heat recovery, pinch technology, 2:712	application of, in electrothermal furnaces, 1:458
opinima near recovery, dinch rechnology, 2:712	

77	36: 11 1 2 070
K	Major accident hazards, 2:972
KATAMAX, 2:862	Major accident prevention policy (MAPP), 2:971
KataMax technology, 1:617	Major Industrial Accidents Council of Canada (MIACC), 2:979
KATAPAK-S, 2:862	Maleic anhydride
KataPak technology, 1:617	from benzene and butane, 2:798
Kellogg-Orthoflow system, 1:397	Management
Kerosene, 2:726	business continuity, 2:1124
Key performance indicator (KPI), 2:700	of change process, 2:1126
Kinetic model	crisis, 2 :1124
for first-order reactions, 1:56	emergency response, 2:1124
Kinetics	work procedure, 2:1127
of continuous, ideally mixed stirred tank reactors, 1:193	Management system
of continuous stirred-tank reactors, 1:193	audits and reviews, 2:1129
of gases in liquids with reactants from both, 1:65	contractors process, 2:1119
in microreactors, 1:600	design and principle, 2:1116
Kivcet furnace, 1:464	holistic, 2:1135
Knudsen diffusion coefficient, 1:46	integrated, 2:1131
Kunii–Kunugi process, 1:400	process safety process, 2:1120
	success factors, 2:1132
L	training process, 2:1118
Lagrangian particle tracking, 1:592–593	Marangoni effect
Laminar flow	in gas-evolving electrodes, 1:279
in metallurgical processing, 1:155	Mass-expansion coefficient, 1:210
in stirred tanks, 1:626	Mass transfer
in straight microchannels, 1:575	airlift loop reactor, 1:242
Langmuir kinetics, 1:50	bubble columns, 1:234
Arrhenius curve for, 1:18	effectiveness factor, 1:72
Langmuir–Hinshelwood theory, 1:19	enhancement factor, 72, 1:70, 1:72
	gas side, in trickle-bed reactors, 1:657
in bimolecular reactions, 1:51	in a nonporous particle, 1:37
oxidation rate of NO, 1:217	in a porous particle, 1:46
Large Eddy Simulation (LES), 1:639 2:1047	in gas-evolving electrodes, 1:285
Laser heating, 1:456	in microreactors, 1:589
Layer of protection analysis (LOPA), 2:1036	in thin-film reactors, 1:644
Lenz's law	liquid side, in trickle-bed reactors, 1:657
for furnaces, 1:470	macrokinetics in, 1:32
Lewis number, 1:74	microconvective, 1:286
Life-cycle analysis	single-phase convection, 1:286
micro process technology, 1:497	two-phase convective, 1:286
Lightnin' A 315, 1:628	with reaction in series, 1:36
Lightnin' KT-3, 1:632	with simultaneous reaction, 1:45
Limiting oxygen concentration, 2:925	Mass-transfer coefficient, 74, 1:35
Linde's isothermal reactor, 1:326	of film theory, 1:56
Linz-Donawitz Arbed Centre process (LDAC), 1:454	of Higbie penetration model, 1:54
Linz–Donawitz process (LD), 1:454	of surface renewal model, 1:55
Liquefied petroleum gas	Maximum experimental safe gap, 2:918, 1007
fuel, 2:728	Maximum experimental safe gap, 21/16, 1667
Liquid chromatographic reactor, 1:268	gas, 2:920
Liquid fuel	powder, 2: 925
characterization, 2:725	Maximum oxidizing gas concentration, 2:914
combustion systems, 2:734	Maximum permissible flammable gas concentration, 2:914
types, 2:726	Maximum rate of pressure rise, 2:920
Liquid-liquid biphasic catalysis, 2:820	
Liquid-liquid systems	Maximum temperature of synthesis reaction, 2:950 Maximum temperature of technical reason, 2:950
in stirred tanks, 1:634	Mazzoni multitube reactor, 1:648
Liquids	Membrane bioreactor
combustibility, 2:921	
Liquid-solid fluidized-bed reactor	integrated or submerged, 1:433
mathematical modeling, 1:406	recirculated or external, 1:433
Ljungström heat-exchanger, 1:351	Membrane contactor, 1:422
Lockhart–Martinelli parameter, 1:656	Membrane distributor, 1:422
Log-normal distribution, 2:1028	Membrane extractor, 1:421
Loss control concept, 2:1104	Membrane filter
Lower explosion limit, 2:925	in biochemical engineering, 1:147
Lower flammability concentration, 2:1055	Membrane preparation, 1:435
Lower flammability distance, 2:1053	Membrane reactor, 1:419
Lubricants	catalytically active membranes, 1:434
in biochemical engineering, 1:125	catalytically inert or passive membrane, 1:434
Lummus SRT-I furnace, 1:669	classification, 1:419
Lurgi fixed-bed gasifier, 1:398	inorganic membranes, 1:423
Lurgi Sand-cracker, 1:400	membrane-assisted catalysis, 1:434
8,	organic membranes, 1:426
	process intensification, 2:887
M	Membranes
Macroconvection	catalytic, 1:429
in gas-evolving electrodes, 1:278	catalytically active, 1:434
Macrofluid, 1:22	catalytically inert or passive, 1:434
Macrokinetics, 1:21	photoreactor, 1:428
heat transfer, 1:74	Mesomixing, 1:631
mass transfer without reaction, 1:32	Metallurgical furnace, 1:439
mass transfer with reaction, 1:36	Metallurgical processes
Macromixing, 1:22, 630	equilibria control, 1:160
residence-time distribution in, 1:22	kinetic process, 1:160
Magnetizing roasting, 1:443	modeling, 1:164

```
rate equations via artificial intelligence, 1:166
                                                                                      3D solution to flow distribution problems, 1:579
                                                                                      micro process technology, 1:500
                                                                                      multichannel flow domains, 1:578
   residence time distribution, 1:159
Metallurgical processing
                                                                                      multichannel, heat transfer, 1:584
   reaction engineering, 1:153
                                                                                      process intensification, 2:850
Methane
                                                                                      reduced-order flow model, 1:579
   combustion, 2:722
                                                                                  Microreactors, modeling and simulation
   dream reaction 2:807
                                                                                      CFD simulations 1:579
Methanol
                                                                                      chemical kinetics. 1:600
   fuel 2:727
                                                                                      flow distribution 1:575
I -Methionine
                                                                                      heat transfer, 1:581
   production in chromatographic reactor, 1:270
                                                                                      mass transfer, 1:589
MFI (silicalite) membrane, 1:424
                                                                                  Micro rectification, 1:557
Michaelis-Menten kinetics, 1:20
                                                                                  Microseparator
Microalgae
                                                                                      process intensification, 2:855
   aeration, 1:487
                                                                                  Microwave dielectric heating, 2:833
   carbon dioxide supply, 1:487
                                                                                  Microwave-assisted organic synthesis, 2:836
   light attenuation, 1:485
                                                                                  Minimum ignition energy, 2:923
   light fluctuation, 1:486
                                                                                  Minimum ignition temperature, 2:923
   light saturation and dilution, 1:484
                                                                                  Minimum required amount of inert gas, 2:914
                                                                                  Miniplant, 2:765
Microalgae reactor, 1:483
   computational fluid dynamics. 1:487
                                                                                      automation stages, 2:767
   surface-to-volume ratio, 1:485
                                                                                      construction, 2:766
   types, 1:488
                                                                                      disadvantages, 2:768
Microcalorimetry
                                                                                      miniaturization limits, 2:767
                                                                                  Mixing
   plant and process safety, 2:946
Microchannel
                                                                                      in biochemical engineering, 1:96
   converging-diverging, flow in, 1:577
                                                                                      in fluidized beds, 1:389
                                                                                      horizontal, of solids, 1:391
   curved, flow in, 1:576
   curved, heat transfer in, 1:582
                                                                                      hydraulic, 1:98
   straight, flow in, 1:575
                                                                                      of gas in bubbling fluidized beds, 1:393
   straight, heat transfer in, 1:582
                                                                                      of gas in circulating fluidized beds, 1:393
Micro chromatography, 1:558
                                                                                      macromixing, 1:22
Microcombustion, 2:744
                                                                                      micromixing, 1:28
                                                                                      pneumatic, 1:98
Microconvection
   in gas-evolving electrodes, 1:278
                                                                                      in stirred tank reactors, 1:628
                                                                                      time to blend, 1:629
Micro distillator, 1:556
Microemulsion
                                                                                      vertical, of solids, 1:390
   process intensification, 2:829
                                                                                  Mixing principles, 2:849
Microevaporators, 1:550
                                                                                  Model reactor, 1:179
Micro extractor, 1:554
                                                                                  Molecular design
Microfluid, 1:22
                                                                                      process intensification on phase level, 2:817
Micro heat exchanger, 1:537, 587
                                                                                  Molecular diffusion, 1:32
   classification, 1:539
                                                                                  Molecular dynamics simulation
   fouling, 1:548
                                                                                      process intensification, 2:812
   heat exchange fundamentals, 1:537
                                                                                  Monod equation, 1:20
                                                                                  Monod model, 1:88
   heat transfer in microchannels, 1:545
   scale-out, 1:548
                                                                                  Monte Carlo simulation
                                                                                      process intensification, 2:812
Microkinetics, 1:11
                                                                                  Moving bed, 1:378
Micro membrane reactor, 1:559
Micromixer, 1:590
                                                                                  MRF-Z radial flow reactor, 1:327
   chaotic, 1:592
                                                                                  MultiPak technology, 1:617
   cross-channel, 1:594
                                                                                  Multiphase reactor
   multilamination, 1:594-595
                                                                                      concepts, 2:860
                                                                                  Multiple-hearth furnace, 1:445
   process intensification, 2:847
Micromixers
                                                                                      roasting of sulfide ores in, 1:447
   bended, 1:527
                                                                                      tungsten slag oxidation in, 1:448
   chaotic advection, 1:526
                                                                                      vanadium production in, 1:448
   classification, 1:518
                                                                                  Multiple Reference Frame model (MRF), 1:639
   design development, 1:528
                                                                                  Multiple stage flash (MSF), 2:697
                                                                                  Multiplicity
   diffusion-based, 1:521
   hydrodynamics, 1:531
                                                                                      of steady states, 1:76
                                                                                  Multitubular reactor
   lamellae flow, 1:522
   microfabrication, 1:528
                                                                                      characteristic numbers, 2:854
   mixing characterization by PIV, 1:530
                                                                                  MUSIG model
   mixing principles, 1:518
                                                                                      bubble columns, 1:238
   modeling, 1:528
   multilamination mixing, 1:522
   split and recombine, 1:524
                                                                                  Nation membrane 1:429
   T-type, 1:521
                                                                                  Nanofibers
   turbulent, 1:527
                                                                                      process intensification, 2:864
   Y-type, 1:521
                                                                                  Natural gas
Micromixing, 1:590, 630
                                                                                      fuel. 2:728
   in a stirred vessel, 1:28
                                                                                  Nernst's law, 1:36
Microorganism
                                                                                  Net present value (NPV)
   growth and bioreaction, 1:87
                                                                                      energy management, 2:689
   growth rates and Michaelis-Menten constant, 1:88
                                                                                  Neural network models
   suitable equipment for specific processes and products of, 1:118, 120, 122
                                                                                      in metallurgical processing, 1:166
Micro process technology, introduction
                                                                                  Newtonian fluid
   concepts, 1:496
                                                                                      stirred tanks, 1:626
   constraints, 1:495
                                                                                  Newton-Raphson method, 1:215
   green chemistry, 1:498
                                                                                  Newton number (power number)
Microreactors
                                                                                      for stirred tanks, 1:626
```

Non-Newtonian fluid	Plug flow model
stirred tanks, 1:626	in microreactors, 1:602
Noranda furnace, 1:452	Plug-flow reactor (PFR)
Notification of Installations Handling Hazardous Substances (NIHSS) Regulation, 2:977	mathematical treatment of, 1:26–27 schematic, 1:154
Nozzle plate	Poincaré map
in fluidized-bed reactors, 1:379	for microreactors, 1:593
Nusselt correlations, 1:546	Poiseuille flow
Nusselt number	in microreactors, 1:599
for gas-evolving electrodes, 1:287	Polydimethylsiloxane (PDMS) membrane, 1:426
	Polyimide membrane, 1:427
0	Poly(<i>N</i> -isopropylacrylamide), 2: 824 Polymerization
Occupational exposure limits (OEL), 2:935	complex reaction scheme for, 1:16
application of, in electrothermal furnaces, 1:458	Polymers
for three-dimensional electrodes, 1:294 Organized structures radiation model, 2:1067	in biochemical engineering, 1:124
Overpotential	Pool fire, 2:1057
in gas-evolving electrodes, 1:287	bounding materials, 2:1059
Oxygen uptake rate, 1:90	large, 2:1062
	modeling, 2:1064 Population balance methodology
P	in metallurgical processes, 1:171
Packed-bed reactor, 1:198	Porous-media model, 1:580
bed porosity of, 1:203, 1:656	Power law
energy balance, mathematical treatment of, 1:199	equation, 1:15
mass balance, mathematical treatment of, 1:199	Power number, 1:626
mass transport in, 1:204	see also Newton number
mathematical treatment of, 1:205	Power plant
Palladium membranes, 1:423 Parallel-plate cell, 1:298	cogeneration, 2:737
Particle-pellet model	combined cycle, 2:738 distributed and centralized, 2:738
in metallurgical processes, 1:170	pulverized coal, 2:736
Particle size distribution	thermal, 2: 735
of bed solids, 1:392	trigeneration, 2:737
Péclet number, 1:204	Prandtl number, 1:235
Peat	for gas-evolving electrodes, 1:287
fuel, 2: 726	for microreactors, 1:582
Penetration theory, 1:33	Pressure-relief device, 2:997
see also Higbie penetration model; Danckwerts penetration model; Surface renewal model; Film theory; Stagnant film model	Process control engineering control system, 2:987
Penetration time, 1:34	equipment, 2:988
Perfluoroalkanes	initiation of safety devices, 2:993
process intensification, 2:821	monitoring system, 2:987
Peristaltic pump	operation of safety systems, 2:991
in biochemical engineering, 1:148	principles of safety systems, 2:990
Personal protective equipment, 2:959	safety instrumented system, 2:987–988
Pervaporation in membrane reactor 1:424	safety techniques, 2:985
in membrane reactor, 1:424 Phase inversion temperature, 1:635	systems, classification of, 2: 986 Process design
PHAST, 2:1046	coupled distillation, 2:715
Phenol	energy efficient, 2:712
cumene process vs. direct oxidation with nitrous oxide, 2:800	feed-effluent heaters, 2:715
Photocatalysis	fluid-fluid heat transfer, 2:715
process intensification, 2:832	multi-stage designs, 2:714
Photocatalytic membrane reactor, 1:429	in reactive distillation, 1:613
Photocatalytic reactor, 2:832 Photosynthesis-irradiance	steam generation, 2:713
microalgae, 1:484	Process development basic flow diagram, 2:774
Pinch analysis, 2:706	chemical plant structure, 2:754
Pinch principle, 2:709	costs, 2: 759
Pinch technology, 2:705	criteria for reducing variant numbers, 2:760
cold composite curve, 2:707	cyclic pattern, 2:758
energy-capital trade-off, 2:710	data banks, 2:760
grand composite curve, 2:709	depreciation, 2:782
hot composite curve, 2: 707 Pipe	economic risk, 2:788
in biochemical engineering, 1:142	energy costs, 2:778 energy management in, 2:689
Piston pump	evaluation, 2:773
in biochemical engineering, 1:148	expert system, 2:762
Pitched blade turbine, 1:626	feedstock costs, 2:778
Plant and process safety, introduction, 2:901	fundamentals, 2:749
Plant and process safety, risk communication	improving technical reliability, 2:783
informal procedures, 2:1145	integrated trial plants, 2:765
normative procedures, 2:1142	investment, 2:775
Plant design energy efficiency, 2:691	ISBL investment costs, 2:776
Plant information system, 2:700	laboratory experiments, 2:763 microplant, 2:765
Plant operation	miniplant, 2:765
control design, 2:700	OSBL investment costs, 2:777
energy efficiency, 2:700	pilot plant, 2:768
Plasma furnace, 475, 1: 456	plant construction, 2:768
Plug flow, 1:154	process flow diagram, 2:775
deviations from, 1:158	production costs, 2:778

```
project execution, 2:769
                                                                                      slag cleaning in, 1:464
   in reactive distillation, 1:615
                                                                                  Refining resistance furnace, 1:464
                                                                                  Reporting of Injuries, and Dangerous Occurrences Regulations (RIDDOR),
   return on investment, 2:786
   simulation program, 2:760
                                                                                            2:977
   small-scale tests, 2:764
                                                                                  Residence time
   staff costs, 2:781
                                                                                      stirred tanks, 1:637
   stages, 2:756
                                                                                  Residence time distribution
   study report 2:773
                                                                                      continuous stirred-tank reactor 1:155
   tasks. 2:755
                                                                                      micromixer, 1:531
   waste-disposal costs, 2:780
                                                                                      plug flow reactor, 1:154
                                                                                      of solids in fluidized beds, 1:392
   waste-disposal flow diagram, 2:775
Process hazard assessment and safety evaluation (PHASE), 2:941
                                                                                      in thin-film reactors, 1:643
Process intensification
                                                                                  Resistance furnace, 1:458
   classification, 2:796
                                                                                      indirect heating, 1:455
   comparison of conventional and microplant process, 2:846
                                                                                      production of nickel/ferronickel in, 1:458, 463
   constituents of, 2:795
                                                                                      with direct resistance, 1:455
   definition, 2:794
                                                                                  Return on investment (ROI)
   micro process technology, 1:499
                                                                                     energy management, 2:689
   miniaturization of equipment, 2:845
                                                                                  Reversed-flow reactor (RFR), 1:254
   molecular descriptors, 2:799
                                                                                  Reynolds Average Navier-Stokes (RANS), 1:639
   at molecular level. 2:797
                                                                                      approach, 2:1047
                                                                                  Reynolds number, 1:235
   phase level. 2:821
                                                                                      in curved channels, 1:576
Process optimization, 2:716
Process Safety Management (PSM), 2:978
                                                                                      for fluidized beds, 1:377
Process simulators, 2:716
                                                                                      for gas-evolving electrodes, 1:285-286
Production site management
                                                                                      for microreactors, 1:583
   energy efficiency, 2:701
                                                                                      in multichannel reactors, 1:580
                                                                                      SAR mixer, 1:598
Propane
   fuel, 2:728
                                                                                      for stirred tanks, 1:625
Propylene oxide
                                                                                      for trickle-bed reactors, 1:655
   reaction routes, 2:801
                                                                                  Rhodes and Geldart model
Pseudohomogeneous model
                                                                                      for fluidized beds, 1:382
                                                                                  R-Phrases, 2:933
   in trickle-bed reactors, 1:660
                                                                                  Riser cracker, 1:396
Pseudo-steady state, 1:14
Pseudo-steady-state approximation
                                                                                  Rising-film reactor, 1:642
   in metallurgical processes, 1:170
                                                                                  Risk
Public Safety and Emergency Preparedness Canada (PSEPC), 2:979
                                                                                      acceptance criteria, 2:1096
Pullman-Kellog Millisecond furnace, 1:670
                                                                                      analysis, 2:1095
Pump cell, 1:298
                                                                                      communication, 2:1141
Pyrox process, 1:403
                                                                                      individual, 2:1097
                                                                                      limit values, 2:1099
                                                                                      perception, 2:1139
                                                                                      permit-to-work systems, 2:964
Quantum chemical calculation
                                                                                      plant life cycle, 2:1143
   process intensification, 2:811
                                                                                      requirements SIL1 and SIL2, 2:989
                                                                                      requirements SIL3, 2:990
                                                                                      societal or collective risk. 2:1099
Rachette furnace, 1:449
                                                                                  Risk Management Plan (RMP), 2:979
RADFRAC
                                                                                  Risk management process, 2:1130
   for simulation of reactive distillation processes, 1:615
                                                                                  Root cause analysis, 2:1107
Rate-controlling step
                                                                                      incident reporting, 2:1109
   in trickle-bed reactors, 1:660
                                                                                  Rotary kiln
Reaction, chemical
                                                                                      design of, 1:439
   influence of concentration, 1:12
                                                                                      ore reduction in, 1:442
   influence of temperature, 1:11
                                                                                      production of cement clinker in, 1:442
   principles of reaction engineering, 1:9
                                                                                      roasting and calcining in, 1:441
   selectivity of reactions in series, 1:42
                                                                                  Rotating cylinder, 1:298
   selectivity of simultaneous reactions, 1:62
                                                                                  Rotating packed bed
Reaction engineering potential
                                                                                      process intensification, 2:839
   chemical intensification, 1:510
                                                                                  Rushton impeller, 1:97
                                                                                  Rushton turbine, 1:624
   transport intensification, 1:508
Reaction, equilibrium, 1:13
Reaction kinetics
   chemical rates, 1:10
                                                                                  Saccharomyces cerevisiae
Reactive chromatography
                                                                                      production of ethanol with, 1:405
   continuous, 2:885
                                                                                  Safe failure fraction, 2:989
   discontinuous, 2:884
                                                                                  Safety
Reactive distillation, 1:609
                                                                                      characteristics derived from explosion diagramm, 2:913
Reactor
                                                                                      handling of chemicals, 2:960
   degree of reactor utilization, 1:60-61
                                                                                      inherent, 2:1104
   design equations for model reactors, 1:179
                                                                                      maintenance and inspection, 2:1125
   desorptive cooling, 2:875
                                                                                      plant and process safety, 2:956
   monolithic, 2:859
                                                                                      production process operation, 2:1122
   optimization of, 1:214
                                                                                  Safety concept, 2:1008
   production of biogas, 1:405
                                                                                     process control engineering, 2:985
   sorption-enhanced, 2:886
                                                                                  Safety devices, 2:993
   with three-dimensional electrodes, 1:292
                                                                                  Safety integrity level, 2:989
Reason model. 2:1106
                                                                                  Safety Management System (SMS), 2:972
Reduction resistance furnace, 1:460
                                                                                  Safety regulation
   production of carbides in, 1:462
                                                                                      Accident Ordinance, 2:976
   production of ferroalloys in, 1:462
                                                                                      Canada, 2:979
   production of lead from sulfide ores in, 1:464
                                                                                      European Union, 2:969
   production of matte in, 1:463
                                                                                      Germany, 2:975
```

110 4 2 070	G: 11 : 1 : (CID 6 1 502
USA, 2:978	Staggered herringbone mixer (SHM), 1:593
Safety Report, 2:972	Stagnant film model, 1:34
Safety tasks	see also Penetration theory
plant and process safety, 2:1103	Standard airlift reactor
Safety valves, 2:993	in biochemical engineering, 1:130
properties, 2:995	Stanton number, 1:235
Sampling	StarLam interdigital multilamellae mixer, 1:524
plant and process safety, 2:961	State diagram
Sauter diameter	Geldart, for fluidized-beds, 1:377
bubble columns, 1:231	Reh, for fluidized-beds, 1:377
Scaba 6SRGT, 1:633	Static helical mixer, 1:488
Scale-up	Static mixer
of fluidized-bed reactors, 1:411	process intensification, 2:862
Schmidt number	Steel
for gas-evolving electrodes, 1:286	vessel material in biochemical engineering, 1:117
	Sterilization
for trickle-bed reactors, 1:658	
Segregation	in autoclave, 1:92
complete segregated fluid, 1:30	in biochemical engineering, 1:91
Selectivity, 1:11	continuous water/steam, 1:93
of reactions in series, 1:42	"empty" sterilization in place (SIP), 1:93
of simultaneous reactions, 1:62	"full" sterilization in place (SIP), 1:93
Self-accelerating electron gun	steam, 1:92
Pierce type, 1:476	Stirred tank reactor ((high relevance)), 1:624
Semenov temperature profile, 2:939	baffled, 1:624
Semiquantitative fault tree analysis (SQUAFTA), 2:1037	batch, 1:637
Separation, reactive	in biochemical engineering, 129, 1: 97
process intensification, 2:877	cascade of, 1:638
Seveso Directive, 2:970	
	continuous, 1:637
legal requirements, 2:1115	mixing, mathematical treatment, 1:27
management systems, 2:1115	semi-batch, 1:637
Seveso II Directive, 2:970	Stirrer
structure, 2:972	co-axial, 1: 630
Shaft furnace, 1:378, 449	high shear, 1:628
Shell-and-tube heat exchanger, 1:642	radial flow, 1:633
Shell HDS process, 1:661	Stoichiometric coefficient, 1:10
Sherwood number, 1:243	Stone & Webster USC furnace, 1:670
for gas-evolving electrodes, 1:286	Stripping, reactive
for thin-film reactors, 1:644	process intensification, 2:879
for trickle-bed reactors, 1:658	Strouhal–Froude number relationship, 2:1060
Shrinking core model, 1:40	Strouhal number, 2:1060
limitations, 1:170	Submerged-arc furnace, 1:460
in metallurgical processes, 1:168	Sucrose
variants, 1:170	inversion of, in a chromatographic reactor, 1:268
Silgrain process, 1:172	Sulfonation
Silicon carbide furnace, 1:466	in Mazzoni multitube reactor, 1:648
Simulated moving bed chromatographic reactor (SMBR)	in multitube reactors, 1:648
process intensification, 2:885	in single-tube reactors, 1:648
Simulated moving bed chromatographic reactor (SMBCR),	Sundaram and Froment kinetic model, 1:678
1:251	Supercritical fluid
Single-phase fluid	physical properties, 2:827
mixing, 1: 629	process intensification, 2:824
Slag-matte furnace, 1:461	SuperFocus interdigital micromixer, 1:523
Sliding Mesh model, 1:639	Supersonic flows, 2:838
SL/RN process	Supported ionic liquid phase catalysis (SLIP), 2:820
for sponge iron production, 1:444	Surface renewal model, 1:34
SMART process	see also Penetration theory
reactor, 1:324	Swiss-roll cell, 1:298
Sohio process, 1:397	SYNTHESIZER
Solid fuel	for design of reactive distillation processes, 1:614
characterization, 2:725	Synthol reactor, 1:398
combustion systems, 2:732	
types, 2:725	an.
process intensification, 2:822	T TANKS 1.620
Solid-liquid systems	TAME process, 1:620
in stirred tanks, 1:631	Tanks-in-series model, 1:159
Solid-phase synthesis	Taylor–Aris analysis
Solid polymer electrolyte cell, 1:298	microreactors, 1:599
	Taylor–Aris dispersion, 1:599
Solids	Taylor flow, 2:866
in stirred tanks, 1:631	Taylor number
Solid-state resistance furnaces, 1:465	for thin-film reactors, 1:644
Solix reactor, 1:489	Taylor vortex, 1:488
Solvent-resistant nanofiltration (SRNF) membranes, 1:427	Taylor vortice, 1:112
Solvent system	
temperature-dependent multicomponent, 2:830	Technique for human error rate prediction (THERP), 2:1030
Söderberg electrode, 1:460	Thermal-expansion coefficient, 1:210
SPAR-H, 2: 1034	Thiele modulus, 1:47
Specific target organ toxicity, 2:934	Aris shape-generalized, 1:49
	shape-generalized, 1:48
Spill fire, 2:1057	Thin-film reactor
fuel effect, 2:1060	back-mixing in, 1:643
Spinning disk reactor	falling film, 1:642
process intensification, 2:840	fluid dynamics in, 1:643
Split-and-recombine (SAR) micromixer, 1:524	mass transfer in, 1:642
Split-and-recombine (SAR) mixer, 1:597	rising film. 1:642

sulfonation in, 1:647	Unipol-Shell fluidized-bed process, 1:399	
temperature profile in, 1:644	Unipol process, 1:399	
wiped film, 1:642	Unit step function, 1:25	
Three-electrode arc furnace, 1:467		
Three-phase trickle-bed reactor, 1:651	V	
flow regimes in, 1:653	Vacuum arc refining (VAR) furnace, 1:468	
liquid holdup in, 1:655	Vacuum induction furnace, 1:456	
TNT equivalency method, 2:1076	Vacuum melting, 1:455	
Transport disengaging height (TDH), 1:382	Valve	
Trickle tower cell, 1:298	in biochemical engineering, 1:137	
1,3,5-Trimethylbenzene	electrode, 1:290	
hydrogenation of, in a chromatographic reactor, 1:267	Van Krevelen–Hoftijzer approximation, 1:6	
True moving bed chromatographic reactor (TMBCR),		
1:251	Vapor cloud explosion, 2:1076 Vibromixer, 1:98	
process intensification, 2:885		
Tubular reactor, 1:665	Vortex formation, 1:626	
coking and carbon formation, 1:677		
for gas-phase chlorocarbon cracking reactions, 1:673	W	
for gas-phase halogenation processes, 1:675	Waelz process, 1:444	
microalgae growth in, 1:491	Wall heat-transfer coefficient	
for olefin production, 1:666, 668	for packed-bed reactors, 1:205	
for perhalogenation, 1:677	Waste	
reactor design, 1:668	fuel. 2:726	
for substitutive bromination, 1: 677	waste-to-energy, 2:734	
for substitutive chlorination, 1:675	Water electrolysis, high-temperature, 1:277	
temperature control, 1:671	Water-bed reactor, 1:488	
turbine, 1:191	Weber number	
Turbulence promoters, 1:298	bubble columns, 1:231	
Turbulent flow	Wetting	
in stirred tanks. 1:626	of large catalyst zones, 1:659	
Two-effect distillation, 2:695	of a particle, 1:659	
Two-fluid model (Euler–Euler model)	Winkler gasification, 1:403	
	Wirbelfliess process, 1:400	
bubble columns, 1:236	Wood	
U	fuel, 2: 725	
Ultrahigh power furnace (UHP), 1:468		
Ultrasound	Z	
process intensification, 2:837	Zeolite membranes, 1:424	
Uninhibited growth, 1:20	Zero-gap cell, 1:298	